Effective excitation of bulk plasmon-polaritons in hyperbolic metamaterials for high-sensitivity refractive index sensing

Journal of Materials Chemistry C - Tập 10 Số 13 - Trang 5200-5209
Ruoqin Yan1, Tao Wang1, Huimin Wang1, Xinzhao Yue1, Lu Wang1, Yuandong Wang1, Shouxin Zhang1
1Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China, 430074

Tóm tắt

The study of hyperbolic metamaterial (HMM) refractive index sensors is an active field of plasmonics and nanophotonics. Our study provides the basis for the development of ultrasensitive HMM sensors related to biochemical sensing.

Từ khóa


Tài liệu tham khảo

Meja-Salazar, 2018, Chem. Rev., 118, 10617, 10.1021/acs.chemrev.8b00359

Špačková, 2016, Proc. IEEE, 104, 2380, 10.1109/JPROC.2016.2624340

Yan, 2020, Nanotechnology, 31, 375202, 10.1088/1361-6528/ab95b8

Polavarapu, 2014, J. Mater. Chem. C, 2, 7460, 10.1039/C4TC01142B

Li, 2015, J. Mater. Chem. C, 3, 6479, 10.1039/C5TC00553A

Zeng, 2015, Adv. Mater., 27, 6163, 10.1002/adma.201501754

Mayer, 2011, Chem. Rev., 111, 3828, 10.1021/cr100313v

Jiang, 2018, Nanophotonics, 7, 1517, 10.1515/nanoph-2018-0023

Lee, 2017, Sensors, 17, 1726, 10.3390/s17081726

Zhou, 2020, J. Mater. Chem. C, 8, 12768, 10.1039/D0TC01990A

Hassan, 2021, Sensing Bio-Sensing Res., 100429, 10.1016/j.sbsr.2021.100429

Palermo, 2021, Nanophotonics, 10, 295, 10.1515/nanoph-2020-0466

Kabashin, 2009, Nat. Mater., 8, 867, 10.1038/nmat2546

Vasilantonakis, 2015, Opt. Express, 23, 14329, 10.1364/OE.23.014329

Sreekanth, 2016, Nat. Mater., 15, 621, 10.1038/nmat4609

Jiang, 2017, Small, 13, 1700600, 10.1002/smll.201700600

Sreekanth, 2019, Adv. Opt. Mater., 7, 1900081, 10.1002/adom.201900081

Hu, 2020, Opt. Express, 28, 25562, 10.1364/OE.397461

Li, 2021, Photonics Res., 9, 379, 10.1364/PRJ.416815

Liu, 2021, Nanophotonics, 10, 2949, 10.1515/nanoph-2021-0301

Yang, 2021, J. Mater. Chem. C, 9, 13647, 10.1039/D1TC02217B

Yan, 2022, Photonics Res., 10, 84, 10.1364/PRJ.444490

Xiao, 2019, J. Light Technol., 37, 3290, 10.1109/JLT.2019.2914183

Jiang, 2020, Opt. Express, 28, 705, 10.1364/OE.382139

Argyropoulos, 2013, Opt. Express, 21, 15037, 10.1364/OE.21.015037

Cho, 2021, Nanophotonics, 10, 3871, 10.1515/nanoph-2021-0337

Li, 2021, Nat. Commun., 12, 1, 10.1038/s41467-020-20314-w

Leviyev, 2017, APL Photonics, 2, 076103, 10.1063/1.4985064

Kong, 2018, J. Mater. Chem. C, 6, 1797, 10.1039/C7TC04748G

Jiang, 2019, Opt. Express, 27, 18970, 10.1364/OE.27.018970

Elser, 2006, Appl. Phys. Lett., 89, 261102, 10.1063/1.2422893

Vasilantonakis, 2015, Laser Photonics Rev., 9, 345, 10.1002/lpor.201400457

Sreekanth, 2014, J. Opt., 16, 105103, 10.1088/2040-8978/16/10/105103

Sreekanth, 2013, Sci. Rep., 3, 1, 10.1038/srep03291

Avrutsky, 2007, Phys. Rev. B: Condens. Matter Mater. Phys., 75, 241402, 10.1103/PhysRevB.75.241402

E. D.Palik , Handbook of optical constants of solids , Academic press , 1998 , vol. 3

Moharam, 1995, JOSA A, 12, 1068, 10.1364/JOSAA.12.001068

Shalabney, 2010, Sens. Actuators, A, 159, 24, 10.1016/j.sna.2010.02.005

Shalabney, 2011, Laser Photonics Rev., 5, 571, 10.1002/lpor.201000009

Dickson, 2015, Adv. Mater., 27, 5974, 10.1002/adma.201501325

Wang, 2018, Photonics Res., 6, 485, 10.1364/PRJ.6.000485

Nenninger, 2001, Sens. Actuators, B, 74, 145, 10.1016/S0925-4005(00)00724-3

Dostálek, 2007, Plasmonics, 2, 97, 10.1007/s11468-007-9037-8

Jing, 2019, Optics Lasers Eng., 112, 103, 10.1016/j.optlaseng.2018.09.013

Xu, 2019, Adv. Opt. Mater., 7, 1801433, 10.1002/adom.201801433

Sreekanth, 2013, Sci. Rep., 3, 1, 10.1038/srep03291

Maccaferri, 2020, APL Photonics, 5, 076109, 10.1063/5.0008687

Wang, 2021, Nanomaterials, 11, 587, 10.3390/nano11030587

Liu, 2021, Nanophotonics, 10, 2949, 10.1515/nanoph-2021-0301