Effective dose estimation for oncological and neurological PET/CT procedures
Tóm tắt
The aim of this study was to retrospectively evaluate the patient effective dose (ED) for different PET/CT procedures performed with a variety of PET radiopharmaceutical compounds. PET/CT studies of 210 patients were reviewed including Torso (n = 123), Whole body (WB) (n = 36), Head and Neck Tumor (HNT) (n = 10), and Brain (n = 41) protocols with 18FDG (n = 170), 11C-CHOL (n = 10), 18FDOPA (n = 10), 11C-MET (n = 10), and 18F-florbetapir (n = 10). ED was calculated using conversion factors applied to the radiotracer activity and to the CT dose-length product. Total ED (mean ± SD) for Torso-11C-CHOL, Torso-18FDG, WB-18FDG, and HNT-18FDG protocols were 13.5 ± 2.2, 16.5 ± 4.5, 20.0 ± 5.6, and 15.4 ± 2.8 mSv, respectively, where CT represented 77, 62, 69, and 63% of the protocol ED, respectively. For 18FDG, 18FDOPA, 11C-MET, and 18F-florbetapir brain PET/CT studies, ED values (mean ± SD) were 6.4 ± 0.6, 4.6 ± 0.4, 5.2 ± 0.5, and 9.1 ± 0.4 mSv, respectively, and the corresponding CT contributions were 11, 14, 23, and 26%, respectively. In 18FDG PET/CT, variations in scan length and arm position produced significant differences in CT ED (p < 0.01). For dual-time-point imaging, the CT ED (mean ± SD) for the delayed scan was 3.8 ± 1.5 mSv. The mean ED for body and brain PET/CT protocols with different radiopharmaceuticals ranged between 4.6 and 20.0 mSv. The major contributor to total ED for body protocols is CT, whereas for brain studies, it is the PET radiopharmaceutical.
Tài liệu tham khảo
Townsend DW, Beyer T, Blodgett TM. PET/CT scanners: a hardware approach to image fusion. Semin Nucl Med. 2003;33:193–204.
Alavi A, Reivich M. Guest editorial: the conception of FDG-PET imaging. Semin Nucl Med. 2002;32:2–5.
Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med. 2008;49:480–508.
Belhocine T, Spaepen K, Dusart M, Castaigne C, Muylle K, Bourgeois P, et al. 18FDG PET in oncology: the best and the worst (review). Int J Oncol. 2006;28:1249–61.
European Union. Medical radiation exposure of the European population. Part 1/2. Radiat Prot N° 180 2014:1–181.
Nanni C, Fantini L, Nicolini S, Fanti S. Non FDG PET. Clin Radiol. 2010;65:536–48.
Huang B, Martin Wai-Ming Law M, Khong P-L, Law MW-M, Khong P-L. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251:166–74.
Willowson KP, Bailey EA, Bailey DL. A retrospective evaluation of radiation dose associated with low dose FDG protocols in whole-body PET/CT. Australas Phys Eng Sci Med. 2012;35:49–53.
Avramova-Cholakova S, Ivanova S, Petrova E, Garcheva M, Vassileva J. Patient doses from PET-CT procedures. Radiat Prot Dosimetry. 2015;165:1–4.
Houshmand S, Salavati A, Basu S, Khiewvan B, Alavi A. The role of dual and multiple time point imaging of FDG uptake in both normal and disease states. Clin Transl Imaging. 2014;2:281–93.
Matthiessen LW, Johannesen HH, Skougaard K, Gehl J, Hendel HW. Dual time point imaging fluorine-18 flourodeoxyglucose positron emission tomography for evaluation of large loco-regional recurrences of breast cancer treated with electrochemotherapy. Radiol Oncol. 2013;47:358–65.
Prieto E, Marti-Climent JM, Dominguez-Prado I, Garrastachu P, Diez-Valle R, Tejada S, et al. Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med. 2011;52:865–72.
European Union. Diagnostic reference levels in thirty-six European countries. Part 2/2. Radiat Prot N° 180 2014:1–73.
Martí-Climent JM, Prieto E, Domínguez-Prado I, García-Velloso MJ, Rodríguez-Fraile M, Arbizu J, et al. Contribution of time of flight and point spread function modeling to the performance characteristics of the PET/CT Biograph mCT scanner. Rev Esp Med Nucl Imagen Mol. 2013;32:13–21.
Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.
Inoue Y, Nagahara K, Tanaka Y, Miyatake H, Hata H, Hara T. Methods of CT dose estimation in whole-body 18F-FDG PET/CT. J Nucl Med. 2015;56:695–700.
International Commission on Radiological Protection. ICRP 106 Publication. Radiation dose to patients from radiopharmaceuticals. Ann ICRP 2007;38:21–4.
Tolvanen T, Yli-Kerttula T, Ujula T, Autio A, Lehikoinen P, Minn H, et al. Biodistribution and radiation dosimetry of [11C]choline: a comparison between rat and human data. Eur J Nucl Med Mol Imaging. 2010;37:874–83.
Joshi AD, Pontecorvo MJ, Adler L, Stabin MG, Skovronsky DM, Carpenter AP, et al. Radiation dosimetry of florbetapir F 18. EJNMMI Res. 2014;4:4.
Kaushik A, Jaimini A, Tripathi M, D’Souza M, Sharma R, Mishra AK, et al. Estimation of patient dose in (18)F-FDG and (18)F-FDOPA PET/CT examinations. J Cancer Res Ther. 2013;9:477–83.
Wu T-H, Chu T-C, Huang Y-H, Chen L-K, Mok S-P, Lee J-K, et al. A positron emission tomography/computed tomography (PET/CT) acquisition protocol for CT radiation dose optimization. Nucl Med Commun. 2005;26:323–30.
Quinn B, Dauer Z, Pandit-Taskar N, Schoder H, Dauer LT. Radiation dosimetry of 18F-FDG PET/CT: incorporating exam-specific parameters in dose estimates. BMC Med Imaging. 2016;16:41.
Brix G, Lechel U, Glatting G, Ziegler SI, Münzing W, Müller SP, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med. 2005;46:608–13.
Jallow N, Christian PE, Sunderland J, Graham MM, Hoffman JM, Nye JA. Diagnostic reference levels of CT radiation dose in oncology whole-body PET/CT. J Nucl Med. 2015;57:238–41.
Etard C, Celier D, Roch P, Aubert B. National survey of patient doses from whole-body FDG PET-CT examinations in France in 2011. Radiat Prot Dosimetry. 2012;152:334–8.
Murano T, Minamimoto R, Senda M, Uno K, Jinnouchi S, Fukuda H, et al. Radiation exposure and risk-benefit analysis in cancer screening using FDG-PET: results of a Japanese nationwide survey. Ann Nucl Med. 2011;25:657–66.
Prieto E, Domínguez-Prado I, García-Velloso MJ, Peñuelas I, Richter JA, Martí-Climent JM. Impact of time-of-flight and point-spread-function in SUV quantification for oncological PET. Clin Nucl Med. 2013;38:103–9.
Teoh EJ, McGowan DR, Macpherson RE, Bradley KM, Gleeson FV. Phantom and clinical evaluation of the Bayesian penalized likelihood reconstruction algorithm Q.Clear on an LYSO PET/CT system. J Nucl Med. 2015;56:1447–52.
Murray I, Kalemis A, Glennon J, Hasan S, Quraishi S, Beyer T, et al. Time-of-flight PET/CT using low-activity protocols: potential implications for cancer therapy monitoring. Eur J Nucl Med Mol Imaging. 2010;37:1643–53.
Tonkopi E, Ross AA, MacDonald A. CT dose optimization for whole-body PET/CT examinations. Am J Roentgenol. 2013;201:257–63.
Rausch I, Cal-González J, Dapra D, Gallowitsch HJ, Lind P, Beyer T, et al. Performance evaluation of the Biograph mCT Flow PET/CT system according to the NEMA NU2-2012 standard. EJNMMI Phys. 2015;2:26.
de Margerie-Mellon C, de Bazelaire C, Montlahuc C, Lambert J, Martineau A, Coulon P, et al. Reducing radiation dose at chest CT: Comparison among model-based type iterative reconstruction, hybrid iterative reconstruction, and filtered back projection. Acad Radiol. 2016;23:1246–54.
Shin HJ, Chung YE, Lee YH, Choi JY, Park MS, Kim MJ, et al. Radiation dose reduction via sinogram affirmed iterative reconstruction and automatic tube voltage modulation (CARE kV) in abdominal CT. Korean J Radiol. 2013;14:886–93.
Huda W, Magill D, He W. CT effective dose per dose length product using ICRP 103 weighting factors. Med Phys. 2011;38:1261–5.
Saltybaeva N, Jafari ME, Hupfer M, Kalender WA. Estimates of effective dose for CT scans of the lower extremities. Radiology. 2014;273:153–9.
Khamwan K, Krisanachinda A, Pasawang P. The determination of patient dose from 18F-FDG PET/CT examination. Radiat Prot Dosimetry. 2010;141:50–5.