Effective anti-plane properties of piezoelectric fibrous composites

Acta Mechanica - Tập 224 - Trang 2719-2734 - 2013
N. Rylko1
1Institute of Technology, Pedagogical University, Kraków, Poland

Tóm tắt

Anti-plane shear of piezoelectric fibrous composites is theoretically investigated. The geometry of composites is described by the 2-dimensional geometry in a section perpendicular to the unidirectional fibers. The previous constructive results obtained for scalar conductivity problems are extended to piezoelectric anti-plane problems. First, the piezoelectric problem is written in the form of the vector-matrix $${\mathbb{R}}$$ -linear problem in a class of double periodic functions. In particular, application of the zeroth-order solution to the $${\mathbb{R}}$$ -linear problem yields a vector-matrix extension of the famous Clausius–Mossotti approximation. The vector-matrix problem is decomposed into two scalar $${\mathbb{R}}$$ -linear problems. This reduction allows us to directly apply all the known exact and approximate analytical results for scalar problems to establish high-order formulae for the effective piezoelectric constants. Special attention is paid to non-overlapping disks embedded in a two-dimensional background.

Tài liệu tham khảo

Galka A., Telega J.J., Wojnar R.: Homogenization and thermopiezoelectricity. Mech. Res. Commun. 19, 315–324 (1992) Galka A., Telega J.J., Wojnar R.: Some computational aspects of homogenization of thermopiezoelectric composites. Comput. Assist. Mech. Eng. Sci. 3, 113–154 (1996) Gambin B., Galka A.: Boundary layer problem in a piezoelectric composite. In: Parker, D.F., England, A.H. (eds) Proceedings of IUTAM Symposium on Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics, pp. 327–332. Kluwer, The Netherlands (1995) Galka, A., Wojnar, R.: Layered piezoelectric composites: macroscopic behaviour. In: Holnicki-Szulc, J., Rodellar, J. (eds.) Smart Structures Requirements and Potential Applications in Mechanical and Civil Engineering. Proceedings of the NATO Advanced Research Workshop, Pultusk, Warsaw, Poland, 16–19 June 1998 Series: Nato Science Partnership Subseries: 3 (closed), vol. 65. Kluwer, Dordrecht, pp. 79–89 (1999) Gambin, B.: Influence of the microstructure on the properties of elastic, piezoelectric and thermoelastic composites. IFTR Reports 12/2006, IPPT PAN, Warszawa (in Polish) (2006) Telega, J.J.: Piezoelectricity and homogenization—application to biomechanics. 6th International Symposium on Continuum Models and Discrete Systems (CMDS6), Université de Bourgogne, Dijon, France, Jun 25–29, 1989, In: Maugin, G.A. (eds.) Continuum models and discrete systems, vol. 2, pp. 220–229 (1991) Wojnar R.: Homogenization of piezoelectric solid and thermodynamics. Rep. Math. Phys. 40, 585–598 (1997) Benveniste Y.: Correspondence relations among equivalent classes of heterogeneous piezoelectric solids under anti-plane mechanical and in-plane electrical fields. J. Mech. Phys. Solids 43, 553–571 (1995) Milgrom M., Shtrikman S.: Linear response of two-phase composites with cross moduli: exact universal relations. Phys. Rev. A 40, 1568–1575 (1989) Schulgasser K.: Relationships between the effective properties of transversely isotropic piezoelectric composites. J. Mech. Phys. Solids 40, 473–479 (1992) Avellaneda M., Swart P.J.: Calculating the performance of 1–3 piezoelectric composites for hydrophone applications: an effective medium approach. J. Acoust. Soc. Am. 103, 1449–1467 (1998) Dunn M., Taya M.: Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. Int. J. Solids Struct. 30, 161–175 (1993) Adler P.M., Mityushev V.: Effective medium approximations and exact formulas for electrokinetic phenomena in porous media. J. Phys. A. Math. Gen. 36, 391–404 (2003) Levin V.M., Sabina F.J., Bravo-Castillero J., Guinovart-Diaz R., Rodriguez-Ramos R., Valdiviezo-Mijangos O.C.: Analysis of effective properties of electroelastic composites using the self-consistent and asymptotic homogenization methods. Int. J. Eng. Sci. 46, 818–834 (2008) Matheron G.: Eléments pour une théorie des milieux poreux. Masson, Paris (1967) Dykhne A.M.: Conductivity of a two-dimensional two-phase system, Sov. Phys. JETP 32, 63–65 (1971) Kanaun S.K., Levin V.: Self-consistent Methods for Composites. Springer, Dordrecht (2008) Mityushev, V., Rylko, N.: Maxwell’s approach to effective conductivity and its limitations. Quart. J. Mech. Appl. Math. (2013). doi:10.1093/qjmam/hbt003 Bardzokas D.I., Filshtinsky M.L., Filshtinsky L.A.: Mathematical Methods in Electro-Magneto-Elasticity. Springer, Berlin (2007) Grigolyuk, E.I., Fil’shtinskii, L.A.: Perforated plates and shells. Nauka, Moscow, (in Russian) (1970) Fil’shtinskii L.A., Shramko Yu.: Averaging the physical properties of fibrous piezocomposites. Mech. Compos. Mater. 34, 87–93 (1998) Buchukuri T., Chkadua O., Natroshvili D., Sändig A.-M.: Solvability and regularity results to boundary-transmission problems for metallic and piezoelectric elastic materials. Math. Nachr. 282, 1079–1110 (2009) Buchukuri T., Chkadua O., Natroshvili D.: Mixed boundary value problems of thermopiezoelectricity for solids with interior cracks. Int. Eq. Oper. Theory 64, 495–537 (2009) Rayleigh J.W.S.: On the influence of obstacles arranged in rectangular order upon the properties of the medium. Phil. Mag. 34, 481–502 (1892) Perrins W.T., McKenzie D.R., McPhedran R.C.: Transport properties of regular arrays of cylinders. Proc. R. Soc. Lond. A 369, 207–225 (1979) McPhedran R.C.: Transport properties of cylinder pairs and of the square array of cylinders. Proc. R. Soc. Lond. A 408, 31–43 (1986) McPhedran R.C., Milton G.W.: Transport properties of touching cylinder pairs and of the square array of touching cylinders. Proc. R. Soc. Lond. A 411, 313–326 (1987) McPhedran R.C., Poladian L., Milton G.W.: Asymptotic studies of closely spaced, highly conducting cylinders. Proc. R. Soc. Lond. A 415, 185–196 (1988) Fil’shtinskii L.A.: Stresses and displacements in an elastic sheet weakened by a doubly-periodic set of equal circular holes. J. Appl. Math. Mech. 28, 530–543 (1964) McPhedran R.C., Movchan A.B.: The Rayleigh multipole method for linear elasticity. J. Appl. Math. Mech. 42, 711–727 (1994) Movchan A.B., Nicorovici N.A., McPhedran R.C.: Green’s tensors and lattice sums for electrostatics and elastodynamics. Proc. R. Soc. Lond. A 453, 643–662 (1997) Zalipaev V.V., Movchan A.B., Poulton C.G., McPhedran R.C.: Elastic waves and homogenization in oblique periodic structures. Proc. R. Soc. Lond. A 458, 1887–1912 (2002) Platts S.B., Movchan N.V., McPhedran R.C., Movchan A.B.: Two-dimensional phononic crystals and scattering of elastic waves by an array of voids. Proc. R. Soc. Lond. A 458, 2327–2347 (2002) Mityushev V.: Transport properties of doubly periodic arrays of circular cylinders and optimal design problems. Appl. Math. Optim. 44, 17–31 (2001) Berlyand L., Mityushev V.: Generalized Clausius–Mossotti formula for random composite with circular fibers. J. Statist. Phys. 102, 115–145 (2001) Mityushev V.: Representative cell in mechanics of composites and generalized Eisenstein–Rayleigh sums. Complex Var. Elliptic Equ. 51, 1033–1045 (2006) Mityushev, V., Pesetskaya, E., Rogosin, S.V.: Analytical methods for heat conduction in composites and porous media. In: Öchsner, A., Murch, G.E., de Lemos, M.J.S. (eds.) Cellular and Porous Materials: Thermal Properties Simulation and Prediction, pp. 121–164. Wiley, London (2008) Mityushev V.V.: Conductivity of a two-dimensional composite containing elliptical inclusions. Proc. R. Soc. Lond. A 465, 2991–3010 (2009) Czapla R., Nawalaniec W., Mityushev V.: Effective conductivity of random two-dimensional composites with circular non-overlapping inclusions. Comput. Mater. Sci. 63, 118–126 (2012) Guinovart-Diaz R., Yan P., Rodriguez-Ramos R., Lopez-Realpozo J.C., Jiang C.P., Bravo-Castillero J., Sabina F.J.: Effective properties of piezoelectric composites with parallelogram periodic cells. Int. J. Eng. Sci. 53, 58–66 (2012) Mityushev V., Rogosin S.V.: Constructive methods for linear and non-linear boundary value problems of the analytic function, theory and applications. Chapman & Hall/CRC, Boca Raton (2000) Mityushev V.: \({\mathbb{R}}\) -linear and Riemann–Hilbert problems for multiply connected domains. In: Rogosin, S.V., Koroleva, A.A. (eds) Advances in Applied Analysis, pp. 147–176. Birkhäuser, Basel (2012) Akhiezer N.I.: Elements of Theory of Elliptic Functions. Nauka, Moscow (1970); English transl. AMS (1990) Mityushev V.: \({\mathbb{R}}\) -linear problem on torus and its application to composites. Complex Var. 50, 621–630 (2005) Mityushev V., Rylko N.: Optimal distribution of the non-overlapping conducting disks. Multiscale Model. Simul. 10, 180–190 (2012) Mityushev V., Rogosin S.V.: On Riemann–Hilbert problem with a piecewise constant matrix. J. Anal. Appl. 27, 53–66 (2008)