Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hiệu quả và nhanh chóng trong việc loại bỏ phẩm nhuộm tím từ dung dịch nước bằng Rumex acetosella: nghiên cứu đồng vị, động học, nhiệt động lực học và phân tích thống kê
Biomass Conversion and Biorefinery - Trang 1-16 - 2022
Tóm tắt
Trong nghiên cứu này, hiệu suất của lá Rumex acetosella trong việc loại bỏ phẩm nhuộm tím từ dung dịch nước đã được điều tra. Để xác định điều kiện hấp phụ, các nghiên cứu hấp phụ đã được thực hiện dưới các tham số khác nhau, bao gồm thời gian tiếp xúc, nhiệt độ (0–120 phút), pH ban đầu (2–12), nồng độ phẩm nhuộm ban đầu (10–50 mg/L) và liều lượng chất hấp phụ (0,2–4 g/L). Bốn mô hình đồng vị khác nhau đã được áp dụng, bao gồm Freundlich, Langmuir, Dubinin–Radushkevich và Harkins–Jura. Từ dữ liệu thu được, kết luận rằng mô hình Langmuir cho thấy sự phù hợp tốt nhất cho nghiên cứu này. Tỷ lệ loại bỏ phẩm nhuộm tím đạt tối đa là 94,5% ở pH = 7–8 và 25℃. Khả năng hấp phụ đạt tới 434,8 mg/g ở pH = 7–8 tại 25℃. Các nghiên cứu động học cho thấy quá trình hấp phụ tuân theo mô hình động học giả bậc hai. Phân tích BET và dữ liệu khuếch tán trong hạt cho thấy các nhóm chức trên bề mặt chất hấp phụ có hiệu quả hơn so với diện tích bề mặt và các lỗ trong quá trình hấp phụ. Các tham số nhiệt động học cũng đã được điều tra, và phát hiện rằng quá trình hấp phụ diễn ra tỏa nhiệt và tự phát. Ngoài ra, các phân tích thống kê cho các mô hình đồng vị cũng đã được thực hiện.
Từ khóa
Tài liệu tham khảo
Wang X, Zhang Y, Shan R, Hu H (2021) Polydopamine interface encapsulating graphene and immobilizing ultra-small, active Fe3O4 nanoparticles for organic dye adsorption. Ceram Int 47:3219–3231. https://doi.org/10.1016/j.ceramint.2020.09.160
Khnifira M, Boumya W, Abdennouri M, Sadiq M, Achak M, Serdaroglu G, Kaya S, Simsek S, Barka N (2021) A combined molecular dynamic simulation, DFT calculations, and experimental study of the eriochrome black T dye adsorption onto chitosan in aqueous solutions. Int J Biol Macromol 166:707–721. https://doi.org/10.1016/j.ijbiomac.2020.10.228
Pai S, Kini SM, Narasimhan MK, Pugazhendhi A, Selvaraj R (2021) Structural characterization and adsorptive ability of green synthesized Fe3O4 nanoparticles to remove acid blue 113 dye. Surf Interf 23:100947. https://doi.org/10.1016/j.surfin.2021.100947
Zhao J, Xu L, Su Y, Yu H, Liu H, Qian S, Zheng W, Zhao Y (2021) Zr-MOFs loaded on polyurethane foam by polydopamine for enhanced dye adsorption. J Environ Sci 101:177–188. https://doi.org/10.1016/j.jes.2020.08.021
Belkassa K, Khelifa M, Batonneau-Gener I, Marous-Khelifa K, Khelifa A (2021) Understanding of the mechanism of crystal violet adsorption on modified halloysite: hydrophobicity, performance, and interaction. J Hazard Mater 415:125656. https://doi.org/10.1016/j.jhazmat.2021.125656
Mittal H, al Alili A, Morajkar PP, Alhassan SM (2021) Graphene oxide crosslinked hydrogel nanocomposites of xanthan gum for the adsorption of crystal violet dye. J Mol Liq 323:115034. https://doi.org/10.1016/j.molliq.2020.115034
Druzian SP, Zanatta NP, Borchardt RK, Cortes LN, Streit AFM, Severo EC, Goncalves JO, Foletto EL, Lima EC, Dotto GL (2021) Chitin-psyllium based aerogel for the efficient removal of crystal violet from aqueous solutions. Int J Biol Macromol 179:366–376. https://doi.org/10.1016/j.ijbiomac.2021.02.179
Jawad AH, Saud Abdulhameed A, Wilson LD, Syed-Hassan SSA, ALOthman ZA, Khan MR (2021) High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: optimization and mechanism study. Chin J Chem Eng 32:281-290. https://doi.org/10.1016/j.cjche.2020.09.070
Vinayagam R, Pai S, Murugesan G, Varadavenkatesan T, Narayanasamy S, Selvaraj R (2022) Magnetic activated charcoal/Fe2O3 nanocomposite for the adsorptive removal of 2,4-Dichlorophenoxyacetic acid (2,4-D) from aqueous solutions: synthesis, characterization, optimization, kinetic and isotherm studies. Chemosphere 286:131938. https://doi.org/10.1016/j.chemosphere.2021.131938
Pai S, M Kini S, Selvaraj R, Pugazhendhi A (2020) A review on the synthesis of hydroxyapatite, its composites and adsorptive removal of pollutants from wastewater. J Water Process Eng 38:101574. https://doi.org/10.1016/j.jwpe.2020.101574
Zhou Y, Lu J, Zhou Y, Liu Y (2019) Recent advances for dyes removal using novel adsorbents: a review. Environ Pollut 252:352–365. https://doi.org/10.1016/j.envpol.2019.05.072
Yadav S, Yadav A, Bagotia N, Sharma AK, Kumar S (2021) Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater – a review. J Water Process Eng 42:102148. https://doi.org/10.1016/j.jwpe.2021.102148
Yeow PK, Wong SW, Hadibarata T (2020) Removal of azo and anthraquinone dye by plant biomass as adsorbent – a review. Biointerf Res Appl Chem 11:8218–8232. https://doi.org/10.33263/BRIAC111.82188232
Priyantha N, Romzi AA, Chan CM, Lim LBL (2021) Enhancing adsorption of crystal violet dye through simple base modification of leaf adsorbent: isotherm, kinetics, and regeneration. Desalin Water Treat 215:194–208. https://doi.org/10.5004/dwt.2021.26758
Baig H, Dildar A, Zara S, Aujla MA, Asghar MN (2011) In vitro evaluation of antioxidant properties of different solvent extracts of rumex acetosella leaves. Orient J Chem 27:1509–1510
Mittal A, Mittal J, Malviya A, Kaur D, Gupta VK (2010) Adsorption of hazardous dye crystal violet from wastewater by waste materials. J Colloid Interf Sci 343:463–473. https://doi.org/10.1016/j.jcis.2009.11.060
Bildik F, Torunoglu Turan G, Duran H, Sismanoglu T, Senkal BF (2019) Sorption of acidic dyes from water by poly(vinyl imidazole) grafted onto poly(styrene) based beads. Desalin Water Treat 169:353–362. https://doi.org/10.5004/dwt.2019.24669
Motejadded Emrooz HB, Maleki M, Rashidi A, Shokouhimehr M (2021) Adsorption mechanism of a cationic dye on a biomass-derived micro- and mesoporous carbon: structural, kinetic, and equilibrium insight. Biomass Convers Bior 11:943–954. https://doi.org/10.1007/s13399-019-00584-1
Boyatzis SC, Velivasaki G, Malea E (2016) A study of the deterioration of aged parchment marked with laboratory iron gall inks using FTIR-ATR spectroscopy and micro hot table. Herit Sci 4:13. https://doi.org/10.1186/s40494-016-0083-4
Han X, Wang W, Ma X (2011) Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf. Chem Eng J 171:1–8. https://doi.org/10.1016/j.cej.2011.02.067
Ding L, Shao P, Luo Y, Yin X, Yu S, Fang L, Yang L, Yang J, Luo X (2020) Functionalization of UiO-66-NH2 with rhodanine via amidation: towarding a robust adsorbent with dual coordination sites for selective capture of Ag(I) from wastewater. Chem Eng J 382:123009. https://doi.org/10.1016/j.cej.2019.123009
Li G, Ye J, Fang Q, Liu F (2019) Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead (II). Chem Eng J 370:822–830. https://doi.org/10.1016/j.cej.2019.03.260
Nguyen TMT, Do TPT, Hoang TS, Nguyen NV, Pham HD, Nguyen TD, Pham TNM, Le TS, Pham TD (2018) Adsorption of anionic surfactants onto alumina: characteristics, mechanisms, and application for heavy metal removal. Int J Polym Sci 2018:2830286. https://doi.org/10.1155/2018/2830286
Işık B, Uğraşkan V (2021) Adsorption of methylene blue on sodium alginate–flax seed ash beads: isotherm, kinetic and thermodynamic studies. Int J Biol Macromol 167:1156–1167. https://doi.org/10.1016/j.ijbiomac.2020.11.070
Deng LY, Xu GR, Yan ZC, Liu QH, Li GB (2010) Removal effect of Cr (VI) by adsorbent made from sewage sludge. Water Sci Technol 62:2961–2969. https://doi.org/10.2166/wst.2010.314
Nordin AH, Wong S, Ngadi N, Zainol MM, Abd Latif NAF, Nabgan W (2021) Surface functionalization of cellulose with polyethyleneimine and magnetic nanoparticles for efficient removal of anionic dye in wastewater. J Environ Chem Eng 9:104639. https://doi.org/10.1016/j.jece.2020.104639
Essekri A, Hsini A, Naciri Y, Laabd M, Ajmal Z, El Ouardi M, Addi AA, Albourine A (2021) Novel citric acid-functionalized brown algae with a high removal efficiency of crystal violet dye from colored wastewaters: insights into equilibrium, adsorption mechanism, and reusability. Int J Phytoremediation 23:336–346. https://doi.org/10.1080/15226514.2020.1813686
Zhao Y, Yang H, Sun J, Zhang Y, Xia S (2021) Enhanced adsorption of rhodamine B on modified oil-based drill cutting ash: characterization, adsorption kinetics, and adsorption isotherm. ACS Omega 6:17086–17094. https://doi.org/10.1021/acsomega.1c02214
Younis SA, El-Gendy NSh, El-Azab WI, Moustafa YM (2014) Kinetic, isotherm, and thermodynamic studies of polycyclic aromatic hydrocarbons biosorption from petroleum refinery wastewater using spent waste biomass. Desalin Water Treat 56:3013–3023. https://doi.org/10.1080/19443994.2014.964331
El-Gendy NSh, Nassar HN (2015) A comparative study for batch process of phenol biosorption onto different spent waste biomass: kinetics and equilibrium. Energy Sources A: Recovery Util Environ Eff 37:1098–1109. https://doi.org/10.1080/15567036.2014.937016
Saeed A, Sharif M, Iqbal M (2010) Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption. J Hazard Mater 179:564–572. https://doi.org/10.1016/j.jhazmat.2010.03.041
Doan VD, Tran TKN, Nguyen AT, Tran VA, Nguyen TD, Le VT (2021) Comparative study on adsorption of cationic and anionic dyes by nanomagnetite supported on biochar derived from eichhornia crassipes and phragmites australis stems. Environ Nanotechnol Monit Manag 16:100569. https://doi.org/10.1016/j.enmm.2021.100569
Şişmanoğlu T, Pozan GS (2016) Adsorption of congo red from aqueous solution using various TiO2 nanoparticles. Desalin Water Treat 57:13318–13333. https://doi.org/10.1080/19443994.2015.1056834
Taqui SN, Mohan C. S., Khatoon BA, Soudagar MEM, Khan TMY, Mujtaba MA, Ahmed W, Elfasakhany A, Kumar R, Pruncu CI (2021) Sustainable adsorption method for the remediation of malachite green dye using nutraceutical industrial fenugreek seed spent. Biomass Convers Bior. https://doi.org/10.1007/s13399-021-01827-w
El-Gendy NSh, Nassar HN (2016) Study on the effectiveness of spent waste sugarcane bagasse for adsorption of different petroleum hydrocarbons water pollutants: kinetic and equilibrium isotherm. Desalin Water Treat 57:5514–5528. https://doi.org/10.1080/19443994.2015.1004598
Preeti BS, Debnath A, Singh V (2021) Gum ghatti-alginate hybrid bead derived titania spheres for deep removal of toxic dye remazol brilliant violet from aqueous solutions. Environ Nanotechnol Monit Manag 15:100459. https://doi.org/10.1016/j.enmm.2021.100459
Suyamboo BK (2012) Equilibrium, thermodynamic and kinetic studies on adsorption of a basic dye by citrullus lanatus rind. Iran J Energy Environ 3:23–34. https://doi.org/10.5829/idosi.ijee.2012.03.01.0130
Freundlich H (1906) Over the adsorption in solution. J Phys Chem 57:385–471
Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. https://doi.org/10.1021/ja02242a004
Dubinin M, Raduchkevich L (1947) The equation of the characteristic curve of the activated charcoal. Proc Acad Sci USSR Phys Chem Sect 55:331–337
Harkins W, Jura E (1944) The decrease of free surface energy as a basis for the development of equations of adsorption isotherms, and the existence of two condensed phases in films on solids. J Phys Chem 12:112–113
Monash P, Pugazhenthi G (2009) Adsorption of crystal violet dye from aqueous solution using mesoporous materials synthesized at room temperature. Adsorption 15:390–405. https://doi.org/10.1007/s10450-009-9156-y
Kousha M, Daneshvar E, Sohrabi MS, Jokar M, Bhatnagar A (2012) Adsorption of acid orange II dye by raw and chemically modified brown macroalga stoechospermum marginatum. Chem Eng J 192:67–76. https://doi.org/10.1016/j.cej.2012.03.057
Vergili I, Gonder ZB, Kaya Y, Gurdag G, Cavus S (2017) Sorption of Pb (II) from battery industry wastewater using a weak acid cation exchange resin. Process Saf Environ Prot 107:498–507. https://doi.org/10.1016/j.psep.2017.03.018
Giles CH, MacEwan TH, Nakhwa SN, Smith D (1960) 786. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J Chem Soc (Resumed). https://doi.org/10.1039/jr9600003973
Gulen J, Gezerman AO (2021) A novel biosorbent for remediation of colored waste water. Biomass Convers Bior. https://doi.org/10.1007/s13399-021-01381-5
Duran H, Yavuz E, Sismanoglu T, Senkal BF (2019) Functionalization of gum arabic including glycoprotein and polysaccharides for the removal of boron. Carbohydr Polym 225:115139. https://doi.org/10.1016/j.carbpol.2019.115139
Cheruiyot GK, Wanyonyi WC, Kiplimo JJ, Maina EN (2019) Adsorption of toxic crystal violet dye using coffee husks: equilibrium, kinetics and thermodynamics study. Sci Afr 5:e00116. https://doi.org/10.1016/j.sciaf.2019.e00116
Duran H, Sismanoglu S, Sismanoglu T (2019) Binary biomaterials (inorganic material/natural resin): synthesis, characterization and performance for adsorption of dyes. J Ind Chem Soc 96:1245–1251
Bildik F, Turan GT, Barim G, Senkal BF (2014) Removal of acidic and basic dyes from water using crosslinked polystyrene based quaternary ethyl piperazine resin. Sep Sci Technol 49:1700–1705. https://doi.org/10.1080/01496395.2014.906462
Zhao D, Cai C (2021) Cerium-based UiO-66 metal-organic framework for synergistic dye adsorption and photodegradation: a discussion of the mechanism. Dyes Pigm 185:108957. https://doi.org/10.1016/j.dyepig.2020.108957
Pishnamazi M, Ghasemi S, Khosravi A, ZabihiSahebi A, Hasan-Zadeh A, Borghei SM (2021) Removal of Cu (ll) from industrial wastewater using poly (acrylamide-co-2-acrylamide-2-methyl propane sulfonic acid)/graphene oxide/sodium alginate hydrogel: isotherm, kinetics, and optimization study. J Water Process Eng 42:102144. https://doi.org/10.1016/j.jwpe.2021.102144
Fawzy MA (2020) Biosorption of copper ions from aqueous solution by codium vermilara: optimization, kinetic, isotherm and thermodynamic studies. Adv Powder Technol 31:3724–3735. https://doi.org/10.1016/j.apt.2020.07.014
Isik B, Ugraskan V, Cankurtaran O (2021) Effective biosorption of methylene blue dye from aqueous solution using wild macrofungus (Lactarius piperatus). Sep Sci Technol. https://doi.org/10.1080/01496395.2021.1956540
Gulen J, Zorbay F (2017) Methylene blue adsorption on a low cost adsorbent–carbonized peanut shell. Water Environ Res 89:805–816. https://doi.org/10.2175/106143017X14902968254836
Gupta VK, Pathania D, Sharma S, Agarwal S, Singh P (2013) Remediation and recovery of methyl orange from aqueous solution onto acrylic acid grafted ficus carica fiber: isotherms, kinetics and thermodynamics. J Mol Liq 177:325–334. https://doi.org/10.1016/j.molliq.2012.10.007
Shobier AH, El-Sadaawy MM, El-Said GF (2020) Removal of hexavalent chromium by ecofriendly raw marine green alga ulva fasciata: kinetic, thermodynamic and isotherm studies. Egypt J Aquat Res 46:325–331. https://doi.org/10.1016/j.ejar.2020.09.003
Errais E, Duplay J, Darragi F, M’Rabet I, Aubert A, Huber F, Morvan G (2011) Efficient anionic dye adsorption on natural untreated clay: kinetic study and thermodynamic parameters. Desalination 275:74–81. https://doi.org/10.1016/j.desal.2011.02.031
Maneerung T, Liew J, Dai Y, Kawi S, Chong C, Wang CH (2016) Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: kinetics, isotherms and thermodynamic studies. Bioresour Technol 200:350–359. https://doi.org/10.1016/j.biortech.2015.10.047
Fu C, Zhang L, Zhang K, Xiao B, Liu J, Luan Q, Liu J (2021) Effects of air-prepared atmosphere on the Pb2+ adsorption of sludge-based adsorbent. Biomass Convers Bior. https://doi.org/10.1007/s13399-021-01706-4
Hameed BH, Tan IAW, Ahmad AL (2008) Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon. Chem Eng J 144:235–244. https://doi.org/10.1016/j.cej.2008.01.028
Magdy YH, Altaher H (2018) Kinetic analysis of the adsorption of dyes from high strength wastewater on cement kiln dust. J Environ Chem Eng 6:834–841. https://doi.org/10.1016/j.jece.2018.01.009
Lin D, Wu F, Hu Y et al (2020) Adsorption of dye by waste black tea powder: parameters, kinetic, equilibrium, and thermodynamic studies. J Chem 2020:1–13. https://doi.org/10.1155/2020/5431046
Magdy YM, Altaher H, ElQada E (2018) Removal of three nitrophenols from aqueous solutions by adsorption onto char ash: equilibrium and kinetic modeling. Appl Water Sci 8:26. https://doi.org/10.1007/s13201-018-0666-1
Kang HJ, Kim JH (2019) Adsorption kinetics, mechanism, isotherm, and thermodynamic analysis of paclitaxel from extracts of taxus chinensis cell cultures onto sylopute. Biotechnol Bioprocess Eng 24:513–521. https://doi.org/10.1007/s12257-019-0001-1
Saxena M, Sharma N, Saxena R (2020) Highly efficient and rapid removal of a toxic dye: adsorption kinetics, isotherm, and mechanism studies on functionalized multiwalled carbon nanotubes. Surf Interf 21:100639. https://doi.org/10.1016/j.surfin.2020.100639
Vergis BR, Kottam N, Hari Krishna R, Nagabhushana BM (2019) Removal of evans blue dye from aqueous solution using magnetic spinel ZnFe2O4 nanomaterial: adsorption isotherms and kinetics. Nano-Struct Nano-Objects 18:100290. https://doi.org/10.1016/j.nanoso.2019.100290
Gulen J, Iskeceli M (2017) Removal of methylene blue by using porous carbon adsorbent prepared from carbonized chestnut shell. Mater Test 59:188–194. https://doi.org/10.3139/120.110984
Wu CH (2007) Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics. J Hazard Mater 144:93–100. https://doi.org/10.1016/j.jhazmat.2006.09.083
Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048
Hameed BH, Ahmad AA, Aziz N (2007) Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash. Chem Eng J 133:195–203. https://doi.org/10.1016/j.cej.2007.01.032
Dogan M, Abak H, Alkan M (2009) Adsorption of methylene blue onto hazelnut shell: kinetics, mechanism and activation parameters. J Hazard Mater 164:172–181. https://doi.org/10.1016/j.jhazmat.2008.07.155
Alkan M, Dogan M, Turhan Y, Demirbas O, Turan P (2008) Adsorption kinetics and mechanism of maxilon blue 5G dye on sepiolite from aqueous solutions. Chem Eng J 139:213–223. https://doi.org/10.1016/j.cej.2007.07.080
El Khomri M, El Messaoudi N, Dbik A, Bentahar S, Lacherai A (2020) Efficient adsorbent derived from argania Spinosa for the adsorption of cationic dye: kinetics, mechanism, isotherm and thermodynamic study. Surf Interf 20:100601. https://doi.org/10.1016/j.surfin.2020.100601
Kassem Hami H, Fahmi Abbas R, Amer Waheb A, Ibrahim Mahdi N (2020) Removal of eriochrom black T from aqueous solution using Al2O3 surface: linear and non-linear isotherm models, error analysis and thermodynamic studies. Mater Today: Proc 20:599–604. https://doi.org/10.1016/j.matpr.2019.09.196
Alrobei H, Prashanth MK, Manjunatha CR, Pradeep Kumar CB, Chitrabanu CP, Shivaramu PD, Kumar KY, Raghu MS (2021) Adsorption of anionic dye on eco-friendly synthesised reduced graphene oxide anchored with lanthanum aluminate: isotherms, kinetics and statistical error analysis. Ceram Int 47:10322–10331. https://doi.org/10.1016/j.ceramint.2020.07.251
Slimani R, el Ouahabi I, Abidi F, El Haddad M, Regti A, Laamari MR, El Antri S, Lazar S (2014) Calcined eggshells as a new biosorbent to remove basic dye from aqueous solutions: thermodynamics, kinetics, isotherms and error analysis. J Taiwan Inst Chem Eng 45:1578–1587. https://doi.org/10.1016/j.jtice.2013.10.009
Karakus S, Sismanoglu S, Akdut G, Urk O, Tan E, Sismanoglu T, Kilislioglu A (2017) Removal of basic blue 3 from the aqueous solution with ternary polymer nanocomposite: swelling, kinetics, isotherms and error function. J Chem Soc Pak 39:17–25