Effective and coupled thermal conductivities of isotropic open‐cellular foams

AICHE Journal - Tập 50 Số 3 - Trang 547-556 - 2004
J. G. Fourie1, J. P. Du Plessis2
1British Columbia Institute of Technology, Burnaby, BC, Canada V5G 3H2
2Dept. of Applied Mathematics, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa

Tóm tắt

AbstractThe effective and the coupled thermal conductivity of the solid microstructure of open‐cellular foams and an accompanying saturation fluid are defined in a conceptual representation of conductive heat transfer in a two‐phase system of which the phases are in a thermal nonequilibrium state. The effective and coupled thermal conductivities were determined from a close observation of the relationship between microscopic and macroscopic temperature distributions. Temperature distributions were obtained from the numerical solution of the three‐dimensional (3‐D) conduction equation in a representative geometrical model of the foam solid microstructure and the fluid pores. Empirical correlations are provided for the effective and coupled thermal conductivities in terms of the solid and the fluid thermal conductivity and foam porosity. Thermal radiation was not considered in the energy transfer process. © 2004 American Institute of Chemical Engineers AIChE J, 50: 547–556, 2004

Từ khóa


Tài liệu tham khảo

Ashby M. F., 2000, Metal Foams ‐ A Design Guide

10.1016/S0142-727X(96)00085-9

Banhart J., 2000, “Manufacturing Routes for Metallic Foams,”, J. O. M, 52, 22

Bastawros A. F., 1998, “Effectiveness of Open‐Cell Metallic Foams for High Power Electronic Cooling,”, ASME Heat Transf. Division, 361, 211

Bastawros A. F., 1998, Evaluation of Cellular Metal Heat Transfer Media,Report MECH 325

10.1016/0017-9310(93)90080-P

10.1007/BF00238182

Bhattacharya A., 1999, “Analytical‐Experimental Study for the Determination of the Effective Thermal Conductivity of High Porosity Fibrous Foams,”, ASME, Appl. Mech. Division, 233, 13

Bird R. B., 1960, Transport Phenomena

10.1115/1.2826001

10.1115/1.1287793

10.1007/978-94-009-6175-3_3

10.1016/B978-0-12-021810-3.50008-4

Du Plessis J. P., 1991, Heat and Mass Transfer in Porous Media

10.1007/BF00820342

10.1007/BF00828349

Fortini A. J., 1998, Report LEW‐16579

10.1016/S0009-2509(02)00166-5

10.1023/A:1024098012193

Gibson L. J., 1988, Cellular Solids

10.1016/0009-2509(88)85125-X

10.1016/0009-2509(75)80010-8

Guilleminot J. J. andJ. M.Gurgel “Heat Transfer Intensification in Adsorbent Beds of Adsorption Thermal Devices ” Proc. of Solar Eng.‐ The 12thAnnual Int. Solar Eng. Conf Miami FL ASME 69 (1990).

10.1016/0017-9310(94)90392-1

10.1115/1.2826043

10.1115/1.1416690

10.1299/jsmeb.40.577

10.1007/978-1-4612-4254-3

10.1016/S0017-9310(02)00109-6

10.1002/nme.1620100407

10.1115/1.2792634

10.1016/S1359-6454(98)00031-7

10.1016/S0309-1708(96)00023-1

10.1016/0009-2509(85)85037-5

10.1023/A:1006643815323

10.1201/9781482234213

10.1016/S0955-2219(99)00229-0

10.1016/S0065-2717(08)70009-1

10.1016/0017-9310(90)90262-S

10.1016/0009-2509(75)85016-0

10.1177/0021955X8402000203

10.1299/kikaib.58.879

Tien C. L., 1979, “Statistical Bounds for the Effective Thermal Conductivity of Microsphere and Fibrous Insulation,”, AIAA Prog. Ser., 65, 135

10.1205/026387602753501906

10.1115/1.2910442

Viskanta R., 1995, “Modeling of Transport Phenomena in Porous Media using a Two‐Energy Equation Model,”, Proc. of the ASME‐JSME Thermal Eng. Joint Conf., 3, 11

10.1016/0009-2509(74)80059-X

10.1002/aic.690130308

10.1016/S0065-2717(08)70223-5

Whitaker S., 1989, Handbook of Heat and Mass Transfer