Effective Release of Ciprofloxacin and Rifampicin Antibiotics from Alginate-Chitosan Complex and Its Application Against Clinical Strains of Staphylococcus aureus
Springer Science and Business Media LLC - Trang 1-15 - 2023
Tóm tắt
The aim of this study was to characterize the antimicrobial and antibiofilm activities of ciprofloxacin (CIP) and rifampicin (RMP) loaded on a calcium alginate (CaAlg) scaffold via electrostatic interaction of CaAlg/antibiotic (s) and chitosan-TPP nanoparticles (Cs-TPP NPs). The identification of the shape and functional groups was carried out using scanning electron microscope (SEM) and Fourier transform infrared (FT-IR) spectroscopy. SEM images show that the nanoparticles are spherical and granular with an average size of about 100–500 nm. FT-IR results revealed bonds that corresponded to the Cs-TPP NPs and CaAlg-antibiotics (CaAlg-CIP, CaAlg-RMP) after the loading process. The tube adherence method (TM) was employed to identify potential biofilm producers. The antibiofilm capacity of Cs/CaAlg-CIP and Cs/CaAlg-RMP as well as free antibiotics was used against clinical strains in a test tube method and the results showed that the use of sub-MICs of nanodrugs (1/2 MIC) inhibited biofilm formation in the tested strains compared to free CIP and RMP (P < 0.05). The potential antimicrobial effects of Cs/CaAlg-CIP and Cs/CaAlg-RMP NPs against clinical strains were also evaluated using the minimum inhibitory concentration (MICs) and a time-dependent killing method. A robust inhibitory effect on bacterial growth was observed even at low concentrations of Cs/CaAlg-CIP and Cs/CaAlg-RMP NPs (CONC 4 and 2 μg.mL─1) compared to free drugs (CIP at 32 and RMP at 8.0 μg.mL─1), (P < 0.05). The kinetics assay indicated that the Cs/CaAlg-CIP and Cs/CaAlg-RMP NPs had faster and lasting antibacterial effects than those of the free drug(s) on the tested strains. This study shows that loading CIP and RMP into CaAlg scaffolds and complexes with chitosan-TPP nanoparticles via the emulsification/internal gelation increases the antimicrobial activity of antibiotics against clinical strains of S. aureus and thus might serve as a novel type of antimicrobial compounds for the treatment of bacterial infections.
Tài liệu tham khảo
Costa, S. S., Viveiros, M., Amaral, L., & Couto, I. (2013). Multidrug efflux pumps in Staphylococcus aureus: An update. The Open Microbiology Journal, 7(Suppl 1-M5), 59–71.
Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74, 417–433.
Abdulgader, S. M., Shittu, A. O., Nicol, M. P., & Kaba, M. (2015). Molecular epidemiology of methicillin-resistant Staphylococcus aureus in Africa: A systematic review. Frontiers in Microbiology, 6, 348. https://doi.org/10.3389/fmicb.2015.00348
Hua, X., Yang, Q., Zhang, W., Dong, Z., Yu, S., Schwarz, S., & Liu, S. (2018). Antibacterial activity and mechanism of action of aspidinol against multi-drug-resistant methicillin-resistant Staphylococcus aureus. Frontiers in Pharmacology, 9, 619. https://doi.org/10.3389/fphar.2018.00619
Köck, R., Becker, K., Cookson, B., van Gemert-Pijnen, J. E., Harbarth, S., Kluyt-mans, J., et al. (2010). Methicillin-resistant Staphylococcus aureus (MRSA): Burden of disease and control challenges in Europe. Eurosurveillance Weekly., 15, 19688.
Lee, B. Y., Singh, A., David, M. Z., Bartsch, S. M., Slayton, R. B., Huang, S. S., et al. (2013). The economic burden of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). Clinical Microbiology & Infection, 19, 528–536. https://doi.org/10.1111/j.1469-0691.2012.03914.x
Wu, S., Huang, J., Wu, Q., Zhang, F., Zhang, J., Lei, T., Chen, M., Ding, Y., & Xue, L. (2018). Prevalence and characterization of Staphylococcus aureus isolated from retail vegetables in China. Frontiers in Microbiology, 9, 1263. https://doi.org/10.3389/fmicb.2018.01263
Guo, Y., Song, G., Sun, M., Wang, J., & Wang, Y. (2020). Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 10, 107. https://doi.org/10.3389/fcimb.2020.00107
Pratt, L. A., & Kolter, R. (1998). Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology, 30, 285–293.
Kostakioti, M., Hadjifrangiskou, M., & Hultgren, S. J. (2013). Bacterial biofilms: Development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor Perspectives in Medicine, 3, a010306.
Torres, G., Vargas, K., Sanchez-Jimenez, M., Reyes-Velez, J., & Olivera-Angel, M. (2019). Genotypic and phenotypic characterization of biofilm production by Staphylococcus aureus strains isolated from bovine intramammary infections in Colombian dairy farms. Heliyon, 5, e02535.
Lister, J. L., & Horswill, A. R. (2014). Staphylococcus aureus biofilms: Recent developments in biofilm dispersal. Frontiers in Cellular and Infection Microbiology, 23(4), 178. https://doi.org/10.3389/fcimb.2014.00178
Kiedrowski, M. R., & Horswill, A. R. (2011). New approaches for treating staphylococcal biofilm infections. Annals of the New York Academy of Sciences, 1241, 104–121.
Parsek, M. R., & Singh, P. K. (2003). Bacterial biofilms: an emerging link to disease pathogenesis. Annual Reviews in Microbiology, 57(1), 677–701. https://doi.org/10.1146/annurev.micro.57.030502.090720
Campion, J. J., McNamara, P. G., & Evans, M. E. (2004). Evolution of ciprofloxacin-resistant Staphylococcus aureus in in vitro pharmacokinetic environments. Antimicrobial Agents And Chemotherapy, 48(12), 4733–4744. https://doi.org/10.1128/aac.48.12.4733-4744.2004
Zhou, W., Shan, W., & Ma, X. (2012). Molecular characterization of rifampicin-resistant Staphylococcus aureus isolates in a Chinese teaching hospital from Anhui, China. BMC Microbiology, 12, 240.
Wang, C., Fang, R., & Zhou, B. (2019). Evolution of resistance mechanisms and biological characteristics of rifampicin resistant Staphylococcus aureus strains selected in vitro. BMC Microbiology, 19, 220.
Pourebrahim, M., Nejabatdoust, A., Mirmiran, S. D., et al. (2021). Aminoglycosides–loaded glucose-conjugated chitosan nanoparticles for in vitro antimicrobial and antibiofilm screening on Klebsiella pneumonia. BioNanoScience, 11, 901–914. https://doi.org/10.1007/s12668-021-00878-7
Shariatinia, Z. (2019). Pharmaceutical applications of chitosan. Advances in Colloid and Interface Science, 263, 131–194.
Bangun, H., Tandiono, S., & Arianto, A. (2018). Preparation and evaluation of chitosan-tripolyphosphate nanoparticles suspension as an antibacterial agent. Journal of Applied Pharmaceutical Science, 8(12), 147–156.
Scolari, I. R., Páez, P. L., Musri, M. M., et al. (2020). Rifampicin loaded in alginate/chitosan nanoparticles as a promising pulmonary carrier against Staphylococcus aureus. Drug Delivery and Translational Research, 10, 1403–1417. https://doi.org/10.1007/s13346-019-00705-3
PA, W. (2010). Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing: 20th informational supplement. CLSI document M100-S20
Thilakavathy, P., VasanthaPriyan, R. M., & Jagatheeswari, P. A. T. (2015). Evaluation of Ica gene in comparison with phenotypic methods for detection of biofilm production by coagulase negative staphylococci in a tertiary care hospital. Journal of Clinical and Diagnostic Research., 9(8), DC16–DC19.
Wang, B., Wan, Y., Zheng, Y., et al. (2018). Alginate-based composites for environmental applications: a critical review. Critical Reviews in Environmental Science and Technology., 49(4), 1–39. https://doi.org/10.1080/10643389.2018.1547621
Herdiana, Y., Wathoni, N., Shamsuddin, S., & Muchtaridi, M. (2021). Drug release study of the chitosan-based nanoparticles. Heliyon., 8(1), e08674. https://doi.org/10.1016/j.heliyon.2021.e08674
Costa, E. M., Silva, S., Vicente, S., Neto, C., Castro, P. M., Veiga, M., et al. (2017). Chitosan nanoparticles as alternative anti-staphylococci agents: Bactericidal, antibiofilm and antiadhesive effects. Materials Science and Engineering C, 79, 221–226.
Sarkar, N., Sahoo, G., Das, R., Prusty, G., & Swain, S. K. (2017). Carbon quantum dot tailored calcium alginate hydrogel for pH responsive controlled delivery of vancomycin. European Journal of Pharmaceutical Sciences, 109(March), 359–371.
George, M., & Abraham, T. E. (2006). Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan-a review. J Control. Release O. J. Control. Release Soc, 114, 1–14.
Martău, G. A., Mihai, M., & Vodnar, D. C. (2019). The use of chitosan, alginate, and pectin in the biomedical and food sector-biocompatibility, bioadhesiveness, and biodegradability. Polymers (Basel)., 11(11), 1837.
Ali, A., & Ahmed, S. (2018). A review on chitosan and its nanocomposites in drug delivery. International Journal of Biological Macromolecules, 1(109), 273–286. https://doi.org/10.1016/j.ijbiomac
Strand, S. P., Vandvik, M. S., Varum, K. M., & Ostgaard, K. (2001). Screening of chitosans and conditions for bacterial flocculation. Biomacromolecules, 2(1), 126–133. https://doi.org/10.1021/bm005601x
Chandrasekaran, M., Deok Kim, K., & Chul Chun, S. (2020). Antibacterial activity of chitosan nanoparticles: A review. Processes, 8, 1173. https://doi.org/10.3390/pr8091173
Birsoy, K., Wang, T. C., Chen, W. W., Freinkman, E., Abu-Remaileh, M., & Sabatini, D. M. (2015). An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell, 162, 540–551.
Ma, Z., Garrido-Maestu, A., & Jeong, K. C. (2017). Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: A review. Carbohydrate Polymers, 176, 257–265.
Tan, Y., Ma, S., Leonhard, M., Moser, D., Haselmann, G. M., Wang, J., Eder, D., & Schneider-Stickler, B. (2018). Enhancing antibiofilm activity with functional chitosan nanoparticles targeting biofilm cells and biofilm matrix. Carbohydrate Polymers, 200, 35–42. https://doi.org/10.1016/j.carbpol.2018.07.072
Arciola, C. R., Campoccia, D., Ravaioli, S., & Montanaro, L. (2015). Polysaccharide intercellular adhesin in biofilm: Structural and regulatory aspects. Frontiers in Cellular and Infection Microbiology, 10(5), 7. https://doi.org/10.3389/fcimb.2015.00007
Khan, F., Pham, D.T.N, Oloketuyi, S.F, et al. (2020) Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. 185, 110627. https://doi.org/10.1016/j.colsurfb.2019.110627
Jamil, B., Habib, H., Abbasi, S. A., Ihsan, A., Nasir, H., & Imran, M. (2016). Development of cefotaxime impregnated chitosan as nano-antibiotics: De novo strategy to combat biofilm forming multi-drug resistant pathogens. Frontiers in Microbiology, 18(7), 330. https://doi.org/10.3389/fmicb.2016.00330
Zhang, A., Mu, H., Zhang, W., Cui, G., Zhu, J., & Duan, J. (2013). Chitosan coupling makes microbial biofilms susceptible to antibiotics. Science and Reports, 3, 3364.
Calvori, C., Frontali, L., Leoni, L., & Tecce, G. (1965). Effect of rifamycin on protein synthesis. Nature, 207(995), 417–8. https://doi.org/10.1038/207417a0
Drlica, K., & Zhao, X. (1997). DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiology and Molecular Biology Reviews., 61(3), 377–392.
Egorov, A. M., Ulyashova, M. M., & Yu Rubtsova, M. (2018). Bacterial enzymes and antibiotic resistance. Acta Naturae, 10(4 (39)), 33.