Effective NaCl and dye rejection of hybrid graphene oxide/graphene layered membranes

Nature Nanotechnology - Tập 12 Số 11 - Trang 1083-1088 - 2017
Aaron Morelos‐Gómez1, Rodolfo Cruz‐Silva1, Hiroyuki Muramatsu2, Josué Ortiz‐Medina1, Takumi Araki1, Tomoyuki Fukuyo3, Syogo Tejima1, Kenji Takeuchi1, Takuya Hayashi2, Mauricio Terrones2, Morinobu Endo2
1Global Aqua Innovation Center, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
2Institute of Carbon Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
3Showa Denko K.K., Institute for Advanced and Core Technology, 1-1-1, Ohnodai, Midori-ku, Chiba-shi, Chiba, 267-0056, Japan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Mohammad, A. W. et al. Nanofiltration membranes review: recent advances and future prospects. Desalination 356, 226–254 (2015).

Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

Cohen-Tanugi, D. & Grossman, J. C. Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett. 14, 6171–6178 (2014).

Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012).

Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotech. 10, 459–464 (2015).

Tölle, F. J., Gamp, K. & Mülhaupt, R. Scale-up and purification of graphite oxide as intermediate for functionalized graphene. Carbon 75, 432–442 (2014).

Segal, M. Selling graphene by the ton. Nat. Nanotech. 4, 612–614 (2009).

Raidongia, K. & Huang, J. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 134, 16528–16531 (2012).

Cruz-Silva, R., Endo, M. & Terrones, M. Graphene oxide films, fibers, and membranes. Nanotechnol. Rev. 5, 377–391 (2016).

Han, Y., Xu, Z. & Gao, C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23, 3693–3700 (2013).

Goh, K. et al. All-carbon nanoarchitectures as high-performance separation membranes with superior stability. Adv. Funct. Mater. 25, 7348–7359 (2015).

Huang, H. et al. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat. Commun. 4, 2979 (2013).

Akbari, A . et al. Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun. 7, 10891 (2016).

Abraham, J . et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotech. 12, 546–550 (2017).

Yeh, C., Raidongia, K., Shao, J., Yang, Q. & Huang, J. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 7, 166–170 (2015).

Park, S. et al. Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008).

Endo, M. et al. Nanotechnology: ‘buckypaper’ from coaxial nanotubes. Nature 433, 476 (2005).

Salavagione, H. J., Gomez, M. A. & Martinez, G. Polymeric modification of graphene through esterification of graphite oxide and poly(vinyl alcohol). Macromolecules 42, 6331–6334 (2009).

Nicolaï, A., Sumpter, B. G. & Meunier, V. Tunable water desalination across graphene oxide framework membranes. Phys. Chem. Chem. Phys. 16, 8646–8654 (2014).

Baker, R. W. Membrane Technology and Applications (Wiley, 2012).

Wei, Y. et al. Declining flux and narrowing nanochannels under wrinkles of compacted graphene oxide nanofiltration membranes. Carbon 108, 568–575 (2016).

Hu, M. & Mi, B. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 47, 3715–3723 (2013).

Han, Y., Jiang, Y. & Gao, C. High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Appl. Mater. Interfaces 7, 8147–8155 (2015).

Chan, W. et al. Zwitterion functionalized carbon nanotube/polyamide nanocomposite. ACS Nano 7, 5308–5319 (2013).

Selectivity, M.-M. I. et al. Ion-responsive channels of zwitterion-carbon nanotube membrane for rapid water permeation and ultrahigh. ACS Nano 9, 7488–7496 (2015).

Liu, G. et al. Graphene oxide for high-efficiency separation membranes: role of electrostatic interactions. Carbon 110, 56–61 (2016).

Afonso, M. D., Hagmeyer, G. & Gimbel, R. Streaming potential measurements to assess the variation of nanofiltration membranes surface charge with the concentration of salt solutions. Sep. Purif. Technol. 22–23, 52–541 (2001).

Bartels, C., Franks, R., Rybar, S. & Schierach, M. The effect of feed ionic strength on salt passage through reverse osmosis membranes. Desalination 184, 185–195 (2005).

Inukai, S. et al. High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite. Sci. Rep. 5, 13562 (2015).

Wei, N., Peng, X. & Xu, Z. Understanding water permeation in graphene oxide membranes. Appl. Mater. Interfaces 6, 5877–5883 (2014).

Boukhvalov, D. W., Katsnelson, M. I. & Son, Y.-W. Origin of anomalous water permeation through graphene oxide membrane. Nano Lett. 13, 3930–3935 (2013).

Mallapragada, S. K. & Peppas, N. A. Dissolution mechanism of semicrystalline poly(vinyl alcohol) in water. J. Polym. Sci. 34, 1339–1346 (1996).

Marcano, D. C. et al. Improved synthesis of graphene oxide. ACS Nano 4, 4806–4814 (2010).

Cai, W. et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 321, 1815–1817 (2008).

Smith, W. & Todorov, I. T. A short description of DL_POLY. Mol. Simul. 32, 935–943 (2006).

Mayo, S. L., Olafson, B. D. & Goddard, W. A. DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 101, 8897–8909 (1990).

Valiev, M. et al. NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput. Phys. Commun. 181, 1477–1489 (2010).

Humphrey, W., Dalke, A. & Schulten, K. VMD—Visual Molecular Dynamics. J. Mol. Graph. 14, 33–38 (1996).

Kusalik, P. G. & Svishchev, I. M. The spatial structure in liquid water. Science 265, 1219–1221 (1994).