Effect of ultraviolet radiation on physiological and biochemical properties of yeast Saccharomyces cerevisiae during fermentation of ultradispersed starch raw material

Electronic Journal of Biotechnology - Tập 31 - Trang 61-66 - 2018
Victor Revin1, Nelli Atykyan1, Ekaterina Lyovina1, Yuliya Dragunova1, Victoriya Ushkina1
1National Research Ogarev Mordovia State University, Saransk, Russia

Tài liệu tham khảo

Kim, 2008, Amylolytic hydrolysis of native starch granules affected by granule surface area, J Food Sci, 73, C621, 10.1111/j.1750-3841.2008.00944.x Stanley, 2010, Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae, J Ind Microbiol Biotechnol, 37, 139, 10.1007/s10295-009-0655-3 Martínez, 2014, The ICY1 gene from Saccharomyces cerevisiae affects nitrogen consumption during alcoholic fermentation, Electron J Biotechnol, 17, 150, 10.1016/j.ejbt.2014.04.006 Hahsavarani, 2012, Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase, Biotechnol Adv, 30, 1289, 10.1016/j.biotechadv.2011.09.002 Sree, 2000, Isolation of thermotolerant, osmotolerant, flocculating Saccharomyces cerevisiae for ethanol production, Bioresour Technol, 72, 43, 10.1016/S0960-8524(99)90097-4 Xiao, 2006 Kozmin, 2003, Roles of Saccharomyces cerevisiae DNA polymerases Polŋ and Polξ in response to irradiation by simulated sunlight, Nucleic Acids Res, 31, 4541, 10.1093/nar/gkg489 Petin, 2001, Mitotic recombination and inactivation in Saccharomyces cerevisiae induced by UV-radiation (254nm) and hyperthermia depend on UV fluence rate, Mutat Res, 478, 169, 10.1016/S0027-5107(01)00143-9 Shi, 2009, Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae, J Ind Microbiol Biotechnol, 36, 139, 10.1007/s10295-008-0481-z Sridhar, 2002, Effect of UV radiation on thermotolerance, ethanol tolerance and osmotolerance of Saccharomyces cerevisiae VS1 and VS3 strains, Bioresour Technol, 83, 199, 10.1016/S0960-8524(01)00221-8 Kumari, 2012, Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production, J Biosci Bioeng, 114, 622, 10.1016/j.jbiosc.2012.07.007 Lim, 2012, Construction of a thermotolerant Saccharomyces cerevisiae strain for bioethanol production with reduced fermentation time and saccharifying enzyme dose, J Microbiol Biotechnol, 22, 1401, 10.4014/jmb.1203.03069 Kozhina, 2012, RAD18 gene product of yeast Saccharomyces cerevisiae controls mutagenesis induced by hydrogen peroxide, Russ J Genet, 48, 463, 10.1134/S1022795412010127 Stanley, 2010, Transcriptional changes associated with ethanol tolerance in Saccharomyces cerevisiae, Appl Microbiol Biotechnol, 88, 231, 10.1007/s00253-010-2760-7 Ogawa, 2000, Tolerance mechanism of the ethanol-tolerant mutant of sake yeast, J Biosci Bioeng, 90, 313, 10.1016/S1389-1723(00)80087-0 Zhang, 2015, Modulation of mitochondrial membrane integrity and ROS formation by high temperature in Saccharomyces cerevisiae, Electron J Biotechnol, 18, 202, 10.1016/j.ejbt.2015.03.008 Zhao, 2009, Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production, J Biotechnol, 144, 23, 10.1016/j.jbiotec.2009.05.001 Revin VV, Atykyan NA. A method of ethanol production. RU patent 2407798. Application N 2009115345. Registered in the State Register of Inventions of the Russian Federation, December 27, 2010. Revin, 2016, Enzymatic hydrolysis and fermentation of ultradispersed wood particles after ultrasonic pretreatment, Electron J Biotechnol, 20, 14, 10.1016/j.ejbt.2015.11.007 Hedge, 1962, Determination of total carbohydrate method, 17 Walker, 1998 Lin, 2008, Potassium is an activator of homoisocitrate dehydrogenase from Saccharomyces cerevisiae, Biochemistry, 47, 10809, 10.1021/bi801370h Walker, 2004, Metals in yeast fermentation processes, Adv Appl Microbiol, 54, 197, 10.1016/S0065-2164(04)54008-X Cao, 2014, Inhibitory activity of carbonyl compounds on alcoholic fermentation by Saccharomyces cerevisiae, J Agric Food Chem, 62, 918, 10.1021/jf405711f Da Silva, 1992, Effects of potassium on the ethanol production rate of Saccharomyces cerevisiae carrying the plasmid pCYG4 related with ammonia assimilation, Appl Biochem Biotechnol, 37, 1, 10.1007/BF02788852 Birch, 2000, Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae, Enzyme Microb Technol, 26, 678, 10.1016/S0141-0229(00)00159-9 Li, 2010, Improvement of alcoholic fermentation by calcium ions under enological conditions involves the increment of plasma membrane H+-ATPase activity, World J Microbiol Biotechnol, 26, 1181, 10.1007/s11274-009-0286-x Nabais, 1988, Influence of calcium ion on ethanol tolerance of Saccharomyces bayanus and alcoholic fermentation by yeasts, Appl Environ Microbiol, 54, 2439, 10.1128/aem.54.10.2439-2446.1988 Abdel-Banat, 2010, High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?, Appl Microbiol Biotechnol, 85, 861, 10.1007/s00253-009-2248-5 Aydemir, 2014, Genetic modifications of Saccharomyces cerevisiae for ethanol production from starch fermentation: a review, J Bioprocess Biotechnol, 4, 180, 10.4172/2155-9821.1000180 Benjaphokee, 2012, Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol, N Biotechnol, 29, 379, 10.1016/j.nbt.2011.07.002 Yin, 2013, Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae, PLoS Genet, 9, 10.1371/journal.pgen.1003894