Effect of ultraviolet radiation on physiological and biochemical properties of yeast Saccharomyces cerevisiae during fermentation of ultradispersed starch raw material
Tài liệu tham khảo
Kim, 2008, Amylolytic hydrolysis of native starch granules affected by granule surface area, J Food Sci, 73, C621, 10.1111/j.1750-3841.2008.00944.x
Stanley, 2010, Generation and characterisation of stable ethanol-tolerant mutants of Saccharomyces cerevisiae, J Ind Microbiol Biotechnol, 37, 139, 10.1007/s10295-009-0655-3
Martínez, 2014, The ICY1 gene from Saccharomyces cerevisiae affects nitrogen consumption during alcoholic fermentation, Electron J Biotechnol, 17, 150, 10.1016/j.ejbt.2014.04.006
Hahsavarani, 2012, Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase, Biotechnol Adv, 30, 1289, 10.1016/j.biotechadv.2011.09.002
Sree, 2000, Isolation of thermotolerant, osmotolerant, flocculating Saccharomyces cerevisiae for ethanol production, Bioresour Technol, 72, 43, 10.1016/S0960-8524(99)90097-4
Xiao, 2006
Kozmin, 2003, Roles of Saccharomyces cerevisiae DNA polymerases Polŋ and Polξ in response to irradiation by simulated sunlight, Nucleic Acids Res, 31, 4541, 10.1093/nar/gkg489
Petin, 2001, Mitotic recombination and inactivation in Saccharomyces cerevisiae induced by UV-radiation (254nm) and hyperthermia depend on UV fluence rate, Mutat Res, 478, 169, 10.1016/S0027-5107(01)00143-9
Shi, 2009, Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae, J Ind Microbiol Biotechnol, 36, 139, 10.1007/s10295-008-0481-z
Sridhar, 2002, Effect of UV radiation on thermotolerance, ethanol tolerance and osmotolerance of Saccharomyces cerevisiae VS1 and VS3 strains, Bioresour Technol, 83, 199, 10.1016/S0960-8524(01)00221-8
Kumari, 2012, Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production, J Biosci Bioeng, 114, 622, 10.1016/j.jbiosc.2012.07.007
Lim, 2012, Construction of a thermotolerant Saccharomyces cerevisiae strain for bioethanol production with reduced fermentation time and saccharifying enzyme dose, J Microbiol Biotechnol, 22, 1401, 10.4014/jmb.1203.03069
Kozhina, 2012, RAD18 gene product of yeast Saccharomyces cerevisiae controls mutagenesis induced by hydrogen peroxide, Russ J Genet, 48, 463, 10.1134/S1022795412010127
Stanley, 2010, Transcriptional changes associated with ethanol tolerance in Saccharomyces cerevisiae, Appl Microbiol Biotechnol, 88, 231, 10.1007/s00253-010-2760-7
Ogawa, 2000, Tolerance mechanism of the ethanol-tolerant mutant of sake yeast, J Biosci Bioeng, 90, 313, 10.1016/S1389-1723(00)80087-0
Zhang, 2015, Modulation of mitochondrial membrane integrity and ROS formation by high temperature in Saccharomyces cerevisiae, Electron J Biotechnol, 18, 202, 10.1016/j.ejbt.2015.03.008
Zhao, 2009, Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production, J Biotechnol, 144, 23, 10.1016/j.jbiotec.2009.05.001
Revin VV, Atykyan NA. A method of ethanol production. RU patent 2407798. Application N 2009115345. Registered in the State Register of Inventions of the Russian Federation, December 27, 2010.
Revin, 2016, Enzymatic hydrolysis and fermentation of ultradispersed wood particles after ultrasonic pretreatment, Electron J Biotechnol, 20, 14, 10.1016/j.ejbt.2015.11.007
Hedge, 1962, Determination of total carbohydrate method, 17
Walker, 1998
Lin, 2008, Potassium is an activator of homoisocitrate dehydrogenase from Saccharomyces cerevisiae, Biochemistry, 47, 10809, 10.1021/bi801370h
Walker, 2004, Metals in yeast fermentation processes, Adv Appl Microbiol, 54, 197, 10.1016/S0065-2164(04)54008-X
Cao, 2014, Inhibitory activity of carbonyl compounds on alcoholic fermentation by Saccharomyces cerevisiae, J Agric Food Chem, 62, 918, 10.1021/jf405711f
Da Silva, 1992, Effects of potassium on the ethanol production rate of Saccharomyces cerevisiae carrying the plasmid pCYG4 related with ammonia assimilation, Appl Biochem Biotechnol, 37, 1, 10.1007/BF02788852
Birch, 2000, Influence of magnesium ions on heat shock and ethanol stress responses of Saccharomyces cerevisiae, Enzyme Microb Technol, 26, 678, 10.1016/S0141-0229(00)00159-9
Li, 2010, Improvement of alcoholic fermentation by calcium ions under enological conditions involves the increment of plasma membrane H+-ATPase activity, World J Microbiol Biotechnol, 26, 1181, 10.1007/s11274-009-0286-x
Nabais, 1988, Influence of calcium ion on ethanol tolerance of Saccharomyces bayanus and alcoholic fermentation by yeasts, Appl Environ Microbiol, 54, 2439, 10.1128/aem.54.10.2439-2446.1988
Abdel-Banat, 2010, High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?, Appl Microbiol Biotechnol, 85, 861, 10.1007/s00253-009-2248-5
Aydemir, 2014, Genetic modifications of Saccharomyces cerevisiae for ethanol production from starch fermentation: a review, J Bioprocess Biotechnol, 4, 180, 10.4172/2155-9821.1000180
Benjaphokee, 2012, Highly efficient bioethanol production by a Saccharomyces cerevisiae strain with multiple stress tolerance to high temperature, acid and ethanol, N Biotechnol, 29, 379, 10.1016/j.nbt.2011.07.002
Yin, 2013, Genome-wide high-resolution mapping of UV-induced mitotic recombination events in Saccharomyces cerevisiae, PLoS Genet, 9, 10.1371/journal.pgen.1003894