Effect of titanium oxide addition on magnesia refractories

Journal of the Australian Ceramic Society - Tập 56 - Trang 1583-1593 - 2020
Robert Kusiorowski1
1Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Refractory Materials Division in Gliwice, Gliwice, Poland

Tóm tắt

This work contains the results of investigations into the influence of titanium oxide (TiO2) addition on the properties of refractory magnesia ceramics. The presented research involved adding titanium oxide in a classic way, i.e. directly to the ceramic mix. The conducted laboratory tests revealed a significant impact of this oxide on the properties of refractory materials. Addition of a small amount of TiO2 favoured the ceramic mix sintering whereas adding a bigger amount—more than 10 wt% resulted in the formation of refractories characterised by considerable porosity and low mechanical strength. Addition of this oxide also slightly improves the corrosive resistance of refractories.

Tài liệu tham khảo

Szczerba, J.: Modified magnesia refractory materials. Ceramics. 99, 1–204 (2007) (in Polish) Routschka, G. (ed.): Refractory Materials - Pocket Manual, 2nd edn. Vulkan-Verlag, Essen (2004) Pawłowski S., Serkowski S.: Materiały ogniotrwałe – własności i zastosowanie w urządzeniach przemysłowych. Tom 1, Wyd. SITPH, Gliwice 1996. Nadachowski, F. (ed.): Draft of the Refractory Material Technology, 2nd edn. Silesian Technical Publishing, Katowice (1995) (in Polish) Othman, A.G.M., Khalil, N.M.: Sintering of magnesia refractories through the formation of periclase-forsterite-spinel phases. Ceram. Int. 31, 1117–1121 (2005) Garbers-Craig, A.M.: Presidential address: How cool are refractory materials? J. South. Afr. Inst. Min. Metall. 108, 491–506 (2008) Sadik, C., Manni, A., El Kalakhi, S., El Amrani El Hassani, I.: Preparation and characterization of possible basic ceramics from Moroccan magnesite. J. Aust. Ceram. Soc. 55, 15–423 (2019) IARC Working Group on the evaluation of carcinogenic risks to humans. A Review of Human Carcinogens. Part C: Arsenic, Metals, Fibres, and Dusts, IARC, Lyon, 2009. Kusiorowski, R., Wojsa, J., Psiuk, B., Wala, T.: Influence of zirconia addition on the properties of magnesia refractories. Ceram. Int. 42, 11373–11386 (2016) Kusiorowski, R., Psiuk, B.: Fused magnesia-zirconia co-clinker for fired refractories. Ceram. Int. 43, 14263–14270 (2017) Jedynak, L., Wojsa, J., Podwórny, J., Wala, T.: Refractories from the MgO-Al2O3-SnO2 system for metallurgical applications. Materiały Ceramiczne/Ceramic Materials. 63, 34–39 (2011) Yadav, H.M., Kim, J., Pawar, S.H.: Developments in photocatalytic antibacterial activity of nano TiO2: a review. Korean J. Chem. Eng. 33, 1989–1998 (2016) Bayal, N., Jeevanandam, P.: Synthesis of TiO2-MgO mixed metal oxide nanoparticles via a sol-gel method and studies on their optical properties. Ceram. Int. 40, 15463–15477 (2014) Zhang, Y., Jiang, Z., Huang, J., Lim, L.Y., Li, W., Deng, J., Gong, D., Tang, Y., Lai, Y., Chen, Z.: Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Adv. 5, 79479–79510 (2015) Maitra, S., Das, S., Sen, A.: The role of TiO2 in the densification of low cement Al2O3-MgO spinel castable. Ceram. Int. 33, 239–243 (2007) Mohajer, A.S., Ghanbarnezhad, S., Sharifi, L., Mirhosseini, S.H., Irvani, Y.M.: The effect of TiO2 on sinterability and the formation of spinels phases on MgO-Al2O3-TiO2 systems. Int. J. Res. Sci. Manag. 1, 13–20 (2014) Yuan, W.J., Deng, C.J., Zhu, H.X.: Effect of TiO2 addition on the expansion behaviour of alumina-magnesia refractory castables. Mater. Chem. Phys. 162, 724–733 (2015) Suzuki, Y., Shinoda, Y.: Magnesium dititanate (MgTi2O5) with pseudobrookite structure: a review. Sci. Technol. Adv. Mater. 12, 034301 (2011) 6pp Xie, X., Lu, G., Du, W., Wang, Y., Yu, J.: Effect of TiO2 on melting and crystallization mechanism of fused magnesia. Asian J. Chem. 27, 1823–1827 (2015) Lee, Y.B., Park, H.C., Oh, K.D., Riley, F.L.: Sintering and microstructure development in the system MgO-TiO2. J. Mater. Sci. 33, 4321–4325 (1998) Chaudhuri, M., Banerjee, G., Kumar, A., Sarkar, S.L.: Secondary phases in natural magnesite sintered with addition of titanium ilmenite and zirconia. J. Mater. Sci. 34, 5821–5825 (1999) Ghanbarnezhad, S., Nemati, A., Bavand-Vandchali, M., Naghizadeh, R.: Effect of TiO2 in spinel formation and reactive sintering of magnesia-rich ceramics. Int. J. Eng. Adv. Technol. 2, 85–87 (2013) Kalpakli, Y.K.: Investigation of TiO2-added refractory brick properties from calcined magnesite raw material. Refract. Ind. Ceram. 49, 314–318 (2008) Manivasakan, P., Rajendran, V., Rauta, P.R., Sahu, B.B., Sahu, P., Panda, B.K., Valiyaveettill, S., Jegadesan, S.: Effect of TiO2 nanoparticles on properties of silica refractory. J. Am. Ceram. Soc. 93, 2236–2243 (2010) Rodríguez, E., Moreno, F.H., Aguilar-Martínez, J.A., Montes-Mejía, A.E., Ruiz-Valdés, J.J., Puente-Ornelas, R., Contreras, J.E.: Effect of nano-titania content on the mechano-physical properties of magnesia refractory composite. Ceram. Int. 42, 8445–8452 (2016) Mulange D.M., Garbers-Craig A.: Effects of TiO2 addition to chrome-magnesia brick on its mechanical and thermos-mechanical properties, as well as its matte penetration and slag corrosion resistance, Proceeding 347 of Unitecr 2015. Jastrzębska, I., Szczerba, J., Prorok, R., Śnieżek, E.: An experimental study on hydration of various magnesia raw materials. Ceramics-Silikaty. 59, 48–58 (2015) Zhou, M.F., Bak, T., Nowotny, J., Rekas, M., Sorrell, C.C., Vance, E.R.: Defect chemistry and semiconducting properties of calcium titanate. J. Mater. Sci. Mater. Electron. 13, 697–704 (2002) Sembiring, S., Riyanto, A., Rumiyanti, L., Sembiring, Z., Situmeang, R.: Effect of sintering temperature on the structural and physical properties of forsterite using amorphous rice husk silica as refractory precursors. J. Aust. Ceram. Soc. (2019). https://doi.org/10.1007/s41779-019-00346-2 Jantzen, T., Hack, K., Yazhenskikh, E., Müller, M.: Addition of TiO2 and Ti2O3 to the Al2O3-FeO-Fe2O3-MgO system. Calphad. 62, 187–200 (2018)