Effect of thermomechanical treatment on the microstructure, phase composition, and mechanical properties of Al–Cu–Mn–Mg–Zr alloy

Physics of Metals and Metallography - Tập 117 Số 9 - Trang 906-919 - 2016
Ivan Zuiko1, М. Б. Газизов1, Rustam Kaibyshev1
1Belgorod National Research University, Belgorod, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

I. J. Polmear, Light Alloys. From Traditional Alloys to Nanocrystals (Butterworth–Heinemann, Oxford 2006), 4rd ed.

D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys (Chapman and Hall, New York, 1992), 2nd ed.

G. W. Lorimer, “Precipittation in aluminum alloys,” in Precipitation Processes in Solids, ed. by K. C. Russel and H. I. Aaronson (TMS–AIME, Warrendale, PA, 1978), pp. 87–119.

D. Vaughan and J. M. Silcock, “The orientation and shape of θ precipitates formed in an Al–Cu Alloy,” Phys. Status Solidi A 20, 725–736 (1967).

S. C. Wang and M. J. Starink, “Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys,” Int. Mater. Rev. 50, 193–215 (2005).

A. Guinier, “Heterogeneities in solid solutions,” in Solid State Physics. Vol. 9 (Academic, New York, 1959), pp. 293–398.

S. K. Son, M. Takeda, M. Mitome, Y. Bando, and T. Endo, “Precipitation behavior of an Al–Cu alloy during isothermal aging at low temperatures,” Mater. Lett. 59, 629–632 (2005).

S. P. Ringer and K. Hono, “Microstructural evolution and age hardening in aluminum alloys: Atom probe field-ion microscopy and transmission electron microscopy studies,” Mater. Charact. 44, 101–131 (2000).

L. B. Ber, V. V. Teleshov, and O. G. Ukolova, “Phase composition and mechanical properties of wrought aluminum alloys of the system Al–Cu–Mg–Ag–Xi,” Met. Sci. Heat Treat. 50, 220–227 (2008).

V. V. Teleshov, “Development of structural deformed aluminum alloys of Al–Cu and Al–Cu–Mg systems for prolonged work at increased temperatures,” Tekhn. Legk. Splavov, No. 4, 6–31 (2009).

L. B. Ber, “On aging stages of aluminum alloys,” Tekhn. Legk. Splavov, No. 4, 66–76 (2013).

E. Matsubara and E. J. Cohen, “The Guinier-Preston zones in Al–Cu alloys—I,” Acta Metall. 33, 1945–1955 (1985).

E. Matsubara and E. J. Cohen, “The Guinier–Preston zones in Al–Cu alloys—II,” Acta Metall. 33, 1957–1969 (1985).

H. Yoshida, “Some Aspects on the Structure of Guinier–Preston Zones in Al–Cu Alloys Based on High-Resolution Electron Microscope Observations,” Scr. Mater. 22, 947–951 (1988).

K. Hono, T. Nashizumi, Y. Hasegawa, K. Hirano, and T. Sakurai, “A study of multilayer Guinier–Preston zones in an Al–1.7 at. % Cu alloy by atom probe FIM,” Scr. Mater. 20, 487–492 (1986).

M. Karlik, A. Bigot, B. Jouffrey, P. Auger, and S. Belliot, “HREM, FIM and tomographic atom probe investigation of Guinier–Preston Zones in an Al–1.54 at. % Cu alloy,” Ultramicroscopy 98, 219–230 (2004).

T. J. Hono, K. Hiraga, and M. Kawasaki, “Guinier–Preston (GP) zone revisited: Atomic level, observation by HAADF-TEM technique,” Scr. Mater. 44, 2303–2307 (2001).

V. Vaithyanathan, C. Wolverton, and L. Q. Chen, “Multiscale modeling of θ' precipitation in Al–Cu binary alloys,” Acta Mater. 52, 2973–2987 (2004).

L. Bourgeois, Ch. Dwyer, M. Weyland, J.-F. Nie, and B. C. Muddle, “Structure and energetics of the coherent interface between the θ' precipitate phase and aluminum in Al–Cu,” Acta Mater. 59, 7043–7050 (2011).

A. V. Dobromyslov, N. I. Taluts, A. N. Uksusnikov, and E. A. Kozlov, “Effect of spherically converging shock waves on phase and structural state of quenched Al–4 wt % Cu alloy,” Phys. Met. Metallogr. 114, 968–976 (2013).

A. Biswas, D. J. Siegel, C. Wolverton, and D. N. Seidman, “Precipitates in Al–Cu Alloys Revisited: Atom-Probe Tomographic Experiments and First-Principles Calculations of Compositional Evolution and Interfacial Segregation,” Acta Mater. 59, 6187–6204 (2011).

V. M. J. Sharma, S. K. Kumar, R. B. Nageswara, and S. D. Pathak, “Studies on the work-hardening behavior of AA2219 under different ageing treatments,” Metall. Mater. Trans. A 40, 3186–3195 (2009).

J. Teixeira, D. G. Cram, L. Bourgeois, T. J. Bastow, A. J. Hill, and C. R. Hutchinson, “On the strengthening response of aluminum alloys containing shear-resistant plate-shaped precipitates,” Acta Mater. 56, 6109–6122 (2008).

J. F. Nie and B. C. Muddle, “Strengthening of an Al–Cu–Sn alloy by deformation-resistant precipitate plates,” Acta Mater. 56, 3490–3501 (2008).

I. N. Fridlyander, Formation, Study and Application of Aluminum Alloys (Nauka, Moscow, 2013) [in Russian].

J. J. Fisher, Jr., L. S. Kramer, and J. R. Pickens, “Aluminum alloy 2519 in military vehicles,” Adv. Mater. Proces. 160, 43–36 (2002).

I. G. Shirinkina, I. G. Brodova, V. V. Astaf’ev, T. I. Yablonskikh, T. I. Stolyarov, V. V. Stolyarov, A. A. Potapova, A. V. Frolova, V. V. Mukhgalin, and A. L. Bel’tyukov, “Structural and phase transformations in aluminum–copper alloys under the effect of electroplastic deformation,” Phys. Met. Metallogr. 115, 1221–1230 (2015).

F. J. Nie and B. C. Muddle, “Microstructural design of high-strength aluminum alloys,” J. Phase Equil. 19, 543–551 (1998).

Zh. Gao, X. Zhang, and M. Chen, “Influence of strain rate on the precipitate microstructure in impacted aluminum alloy,” Scr. Mater. 59, 983–986 (2008).

E. A. Starke, Jr. and J. T. Staley, “Application of modern aviation alloys in aerospace,” Prog. Aerospace Sci. 32, 131–172 (1996).

D. Bakavos, P. B. Prannell, B. Bes, and F. Eberl, “The effect of silver on microstructural evolution in two 2xxx series Al-alloys with a high Cu: Mg ratio during ageing to a T8 temper,” Mater. Sci. Eng., A 491, 214–223 (2008).

S. P. Ringer, K. Hono, I. J. Polmear, and T. Sakurai, “Nucleation of precipitates in aged Al–Cu–Mg–(Ag) alloys with high Cu: Mg ratios,” Acta Mater. 44, 1883–1898 (1996).

N. Ünlü, B. M. Gable, G. J. Shiflet, and E. A. Starke, Jr., “The effect of cold work on the precipitation of Ω and θ' in a ternary Al–Cu–Mg Alloy,” Metall. Mater. Trans. A 34, 2757–2769 (2003).

C. R. Hutchinson, X. Fan, S. J. Pennycook, and G. J. Shifleton, “The origin of the high coarsening resistance of Ω plates in Al–Cu–Mg–Ag alloys,” Acta Mater. 49, 2827–2841 (2001).

L. Kovarik, P. I. Gouma, C. Kisielowski, S. A. Court, and M. J. Mills, “A HRTEM study of metastable phase formation in Al–Mg–Cu alloys during artificial aging,” Acta Mater. 52, 2509–2520 (2004).

M. J. Styles, C. R. Hutchinson, Y. Chen, A. Deschamps, and T. J. Bastow, “The coexistence of two S (Al2CuMg) phases in Al–Cu–Mg alloys,” Acta Mater. 60, 6940–6951 (2012).

M. Gazizov and R. Kaibyshev, “Effect of pre-straining on the aging behavior and mechanical properties of an Al–Cu–Mg–Ag alloy,” Mater. Sci. Eng., A 625, 119–130 (2015).

M. R. Gazizov, A. V. Dubina, D. A. Zhemchuzhnikova, and R. O. Kaibyshev, “Effect of equal-channel angular pressing and aging on the microstructure and mechanical properties of an Al–Cu–Mg–Si alloy,” Phys. Met. Metallogr. 116, 718–729 (2015).

I. S. Zuiko, M. R. Gazizov, and R. O. Kaibyshev, “Effect of thermomechanical treatment on microstructure and mechanical properties of thermohardenable alloy of Al–Cu–Mg–Mn system,” Tekhnol. Legk. Splavov, No. 2, 63–74 (2015).

L. I. Kaigorodova, D. Yu. Rasposienko, V. P. Pilyugin, and V. G. Pushin, “Effect of storage on the stability of the grained structure and phase transformations in the nanocrystalline alloy 1450 doped with Sc and Mg,” Phys. Met. Metallogr. 113, 913–924 (2012).

S. P. Ringer, K. Hono, I. J. Polmear, and T. Sakurai, “Precipitation process during the early stages of aging in Al–Cu–Mg alloys,” Appl. Surf. Sci. 94/95, 253–260 (1996).

S. P. Ringer, K. Hono, I. J. Polmear, and T. Sakurai, “Nucleation of precipitates in aged Al–Cu–Mg–(Ag) alloys with high Cu/Mg ratios,” Acta Mater. 44, 1883–1898 (1996).