Effect of thermal nonlinearity in high-absorption media on the parameters of the photoacoustic signal detected by the gas microphone method: The fundamental and second harmonics

Pleiades Publishing Ltd - Tập 51 - Trang 765-776 - 2006
U. Madvaliev1, T. Kh. Salikhov2,3, D. M. Sharifov1
1Umarov Physicotechnical Institute, National Academy of Sciences of Tajikistan, Dushanbe, Tajikistan
2Tajik State National University, Dushanbe, Tajikistan
3Kohat University of Science and Technology-KUST, Kohat, Pakistan

Tóm tắt

A perturbation theory is put forward that describes the effect of thermal nonlinearity due to the temperature dependence of the thermophysical parameters of high-absorption systems with a low thermal conductivity on the parameters of the photoacoustic signal detected by the gas microphone technique. It is found that the dependence of the photoacoustic signal amplitude on incident beam intensity I 0 stems from the dependence of the illuminated surface temperature on I 0. This dependence is a complicated function instead of being a simple quadratic function as was expected. In the limiting cases (μsβ ≪ 1 and μsβ ≫ 1), this contribution to the photoacoustic signal amplitude is described by simple expressions, which are convenient for determining the thermal coefficients of the thermophysical parameters of the medium. It is found that the thermal nonlinearity significantly affects the photoacoustic signal phase in the frequency region meeting the condition μsβ ∼ 1. In the above limiting cases, its effect is insignificant. A theory of generation of the photoacoustic signal second harmonic is proposed. The second harmonic is related to the temperature dependence of the thermophysical parameters of the buffer gas and sample. It is shown that the amplitude of the signal is a quadratic function of the incident beam intensity and varies with its frequency as ω−3/2 for μsβ ≫ 1 and ω−5/2 for μsβ ≪ 1.

Tài liệu tham khảo

J. Opsal, A. Rosenswaig, and L. D. Willenborg, Appl. Opt. 22, 3169 (1983). U. Madvaliev, T. Kh. Salikhov, and D. M. Sharifov, Zh. Tekh. Fiz. 74(2), 17 (2004) [Tech. Phys. 49, 158 (2004)]. V. E. Gusev and A. A. Karabutov, Laser Optoacoustics (Nauka, Moscow, 1991; AIP, New York, 1993). A. Rosenswaig and A. Gersho, J. Appl. Phys. 47, 64 (1976). F. A. McDonald and G. C. Wetsel, Jr., in Physical Acoustics, Ed. by W. P. Mason and R. N. Thurston (Academic, New York, 1988), Vol. 18, pp. 168–277. L. V. Burmistrova, A. A. Karabutov, O. V. Rudenko, and F. B. Cherepetskaya, Akust. Zh. 25, 616 (1979) [Sov. Phys. Acoust. 25, 348 (1979)]. T. A. Dunina, S. V. Egerev, L. M. Lyamshev, and K. A. Naugol’nykh, Akust. Zh. 25, 622 (1979) [Sov. Phys. Acoust. 25, 411 (1979)]. L. M. Lyamshev and K. A. Naugol’nykh, Akust. Zh. 27, 641 (1981) [Sov. Phys. Acoust. 27, 357 (1981)]. G. V. Ostrovskaya, Zh. Tekh. Fiz. 72(10), 95 (2002) [Tech. Phys. 47, 1299 (2002)]. G. V. Ostrovskaya, Zh. Tekh. Fiz. 72(12), 64 (2002) [Tech. Phys. 47, 1547 (2002)]. A. A. Bondarenko, A. K. Vologdin, and A. I. Kondrat’ev, Akust. Zh. 26, 828 (1980) [Sov. Phys. Acoust. 26, 467 (1980)]. A. Mandelis, A. Salnick, J. Opsal, and A. Rosenswaig, J. Appl. Phys. 85, 1811 (1999). A. Salnick, J. Opsal, A. Rosenswaig, and A. Mandelis, Solid State Commun. 114, 133 (2000). N. Blombergen, Nonlinear Optics (Benjamin, New York, 1965; Mir, Moscow, 1966). Y. N. Rajakarunanayake and H. K. Wickramasinghe, Appl. Phys. Lett. 48, 218 (1986). G. C. Wetsel and J. M. Spicer, Can. J. Phys. 64, 1269 (1986). S. B. Peralta, H. H. Al-Khafaji, and A. W. Williams, Nondestr. Test. Eval. 6, 17 (1991). C. Wang and P. Li, J. Appl. Phys. 49, 5713 (1993). O. Doka, A. Miklos, and A. Lorincz, Appl. Phys. A 48, 415 (1989). V. Gusev, A. Mandelis, and R. Bleiss, Int. J. Thermophys. 14, 321 (1993). V. Gusev, A. Mandelis, and R. Bleiss, Appl. Phys. A 57, 229 (1993). V. Gusev, A. Mandelis, and R. Bleiss, Mater. Sci. Eng., B 26, 111 (1994). K. L. Muratikov and A. L. Glazov, Zh. Tekh. Fiz. 71(6), 110 (2001) [Tech. Phys. 46, 749 (2001)]. K. L. Muratikov, A. L. Glazov, D. N. Rouz, and D. E. Dumar, Pis’ma Zh. Tekh. Fiz. 28(9), 48 (2002) [Tech. Phys. Lett. 28, 377 (2002)]. L. L. Vasil’ev and S. A. Tanaeva, Thermal Properties of Porous Materials (Nauka i Tekhnika, Minsk, 1971) [in Russian]. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC, Boca Raton, 1997). L. N. Novichenok and Z. P. Shul’man, Thermal Properties of Polymers (Nauka i Tekhnika, Minsk, 1971) [in Russian]. D. V. Ivanyukov and M. L. Fridman, Polypropylene (Khimiya, Moscow, 1974) [in Russian]. V. M. Zolotarev, V. N. Morozov, and E. V. Smirnov, Optical Constants of Natural and Technical Media (Khimiya, Leningrad, 1984) [in Russian].