Effect of the pseudomonas metabolites HQNO on the Toxoplasma gondii RH strain in vitro and in vivo
Tài liệu tham khảo
Acharjee, 2021, Biochemical studies of mitochondrial malate: quinone oxidoreductase from Toxoplasma gondii, Int. J. Mol. Sci., 22, 7830, 10.3390/ijms22157830
Bajohr, 2010, In vitro and in vivo activities of 1-hydroxy-2-alkyl-4(1H) quinolone derivatives against Toxoplasma gondii, Antimicrob. Agents Chemother., 54, 517, 10.1128/AAC.01001-09
Bergin, 1992, Toxoplasma pneumonitis: fatal presentation of disseminated toxoplasmosis in a patient with AIDS, Eur. Respir. J., 5, 1018, 10.1183/09031936.93.05081018
Deng, 2019, Recent progress on anti-Toxoplasma drugs discovery: design, synthesis and screening, Eur. J. Med. Chem., 183, 10.1016/j.ejmech.2019.111711
Doggett, 2012, Endochin-like quinolones are highly efficacious against acute and latent experimental toxoplasmosis, Proc. Natl. Acad. Sci. U. S. A., 109, 15936, 10.1073/pnas.1208069109
Doggett, 2020, Orally Bioavailable endochin-Like quinolone carbonate ester prodrug reduces Toxoplasma gondii brain cysts, Antimicrob. Agents Chemother., 64, 10.1128/AAC.00535-20
Giovati, 2018, Antimicrobial peptides with antiprotozoal activity: current state and future perspectives, Future Med. Chem., 10, 2569, 10.4155/fmc-2018-0460
Gómez, 2018, Polymerase chain reaction (PCR) in ocular and ganglionar toxoplasmosis and the effect of therapeutics for prevention of ocular involvement in South American setting, Acta Trop., 184, 83, 10.1016/j.actatropica.2018.01.013
Hazan, 2016, Auto poisoning of the respiratory chain by a quorum-sensing-regulated molecule favors biofilm formation and antibiotic tolerance, Curr. Biol., 26, 195, 10.1016/j.cub.2015.11.056
Hegewald, 2013, Identification of dihydroorotate dehydrogenase as a relevant drug target for 1-hydroxyquinolones in Toxoplasma gondii, Mol. Biochem. Parasitol., 190, 6, 10.1016/j.molbiopara.2013.05.008
Kerscher, 2008, The three families of respiratory NADH dehydrogenases, Results Probl. Cell Differ., 45, 185, 10.1007/400_2007_028
Konstantinovic, 2019, Treatment of toxoplasmosis: current options and future perspectives, Food Waterborne Parasitol., 15, 10.1016/j.fawpar.2019.e00036
Lin, 2008, The Toxoplasma gondii type-II NADH dehydrogenase TgNDH2-I is inhibited by 1-hydroxy-2-alkyl-4(1H) quinolones, Biochim. Biophys. Acta, 1777, 1455, 10.1016/j.bbabio.2008.08.006
Melo, 2004, New insights into type II NAD(P)H:quinone oxidoreductases, Microbiol. Mol. Biol. Rev., 68, 603, 10.1128/MMBR.68.4.603-616.2004
Melo, 2000, The single mitochondrion of tachyzoites of Toxoplasma gondii, J. Struct. Biol., 130, 27, 10.1006/jsbi.2000.4228
Mital, 2008, Current and emerging approaches to studying invasion in apicomplexan parasites, Subcell. Biochem., 47, 1, 10.1007/978-0-387-78267-6_1
Musso, 2020, Natural compound-derived cytochrome bc1 complex inhibitors as antifungal agents, Molecules, 25, 4582, 10.3390/molecules25194582
Petri, 2018, Structure of the NDH-2 - HQNO inhibited complex provides molecular insight into quinone-binding site inhibitors, Biochim. Biophys. Acta, Bioenerg., 1859, 482, 10.1016/j.bbabio.2018.03.014
Radlinski, 2017, Pseudomonas aeruginosa exoproducts determine antibiotic efficacy against Staphylococcus aureus, PLoS Biol., 15, 10.1371/journal.pbio.2003981
Robert-Gangneux, 2012, Epidemiology of and diagnostic strategies for toxoplasmosis, Clin. Microbiol. Rev., 25, 264, 10.1128/CMR.05013-11
Saleh, 2007, Growth inhibition of Toxoplasma gondii and Plasmodium falciparum by nanomolar concentrations of 1-hydroxy-2-dodecyl-4(1H) quinolone, a high-affinity inhibitor of alternative (type II) NADH dehydrogenases, Antimicrob. Agents Chemother., 51, 1217, 10.1128/AAC.00895-06
Sena, 2015, Type-II NADH: quinone oxidoreductase from Staphylococcus aureus has two distinct binding sites and is rate limited by quinone reduction, Mol. Microbiol., 98, 272, 10.1111/mmi.13120
Sena, 2018, Regulation of the mechanism of type-II NADH: quinone oxidoreductase from S. aureus, Redox Biol., 16, 209, 10.1016/j.redox.2018.02.004
Sepúlveda-Arias, 2014, Toxoplasmosis as a travel risk, Trav. Med. Infect. Dis., 12, 592, 10.1016/j.tmaid.2014.05.007
Smith, 2021, Control of human toxoplasmosis, Int. J. Parasitol., 51, 95, 10.1016/j.ijpara.2020.11.001
Sul, 2021, Quercetin Prevents LPS-Induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells, Molecules, 26, 6949, 10.3390/molecules26226949
Thierbach, 2017, Chemical modification and detoxification of the Pseudomonas aeruginosa Toxin 2-Heptyl-4-hydroxyquinoline N-Oxide by environmental and pathogenic bacteria, ACS Chem. Biol., 12, 2305, 10.1021/acschembio.7b00345
Thierbach, 2019, Synthesis and biological activity of methylated derivatives of the Pseudomonas metabolites HHQ, HQNO and PQS, Beilstein J. Org. Chem., 15, 187, 10.3762/bjoc.15.18
Vallières, 2012, HDQ, a potent inhibitor of Plasmodium falciparum proliferation, binds to the quinone reduction site of the cytochrome bc1 complex, Antimicrob. Agents Chemother., 56, 3739, 10.1128/AAC.00486-12
Wu, 2017, Synergy and target promiscuity drive structural divergence in bacterial alkylquinolone biosynthesis, Cell. Chem. Biol., 24, 1437, 10.1016/j.chembiol.2017.08.024
Zhang, 2019, New life for an old drug: in vitro and in vivo effects of the anthelmintic drug niclosamide against Toxoplasma gondii RH strain, Int. j. parasito. Drugs Drug Resist., 9, 27, 10.1016/j.ijpddr.2018.12.004
Zhang, 2019, Myrislignan exhibits activities against Toxoplasma gondii RH strain by triggering mitochondrial dysfunction, Front. Microbiol., 10, 2152, 10.3389/fmicb.2019.02152
Zhang, 2021, Licarin-B exhibits activity against the Toxoplasma gondii RH Strain by damaging mitochondria and activating autophagy, Front. Cell Dev. Biol., 9
Zeng, 2022, Determination and pharmacokinetics study of UK-5099 in mouse plasma by LC–MS/MS, BMC Vet. Res., 18, 145, 10.1186/s12917-022-03245-0