Effect of the initial phase state of DT-matter on the compression of inertial fusion targets
Tóm tắt
We investigate the efficiency of inertial fusion target compression, where at the initial time moment the thermonuclear fuel is in a two-phase state and has the form of two adjacent layers — the external DT-liquid layer and the internal DT-ice layer. We study this problem for the fast ignition targets, where the ultimate final density of the thermonuclear matter is of a special importance. We take the simplest type of a fast ignition target, which corresponds to the technical justification of the HiPER Project aimed at demonstrating fast ignition at the compressing laser pulse energy ~100 kJ. Such a target presents a spherical DT-ice shell coated with a thin polymer film. We obtain the dependence of the final target density on the mass fraction of the DT-matter liquid phase and formulate the requirements on the admissible concentration of liquid phase if the decrease in the DT-fuel final density does not exceed 10%. We find the criterion for choosing the laser-pulse duration which provides the minimum decrease in the final density of the target containing DT-matter in the initial two-phase state.
Tài liệu tham khảo
N. G. Basov, S. Yu. Gus’kov, and L. P. Feoktistov, J. Sov. Laser Res., 13, 396 (1992).
K. R. Schultz, D. Goodin, and A. Nobile, Nucl. Instrum. Methods A, 464, 109 (2001).
R. C. Cook, Fusion Sci. Technol., 41, Pt. 1, 155 (2002).
E. R. Koresheva, Kratk. Soobsch. Fiz., 12, 35 (1984).
I. V. Aleksandrova, E. R. Koresheva, I. E. Osipov, et al., Laser Particle Beams, 6, 539 (1996).
D. R. Harding, T. B. Jones, and D. D. Meyerhofer, “Mass production of targets for inertial fusion energy,” in: Proceedings of the 5th IAEA Technical Meeting (Vienna, Austria, 24–26 March, 2010).
S. Atzeni, A. Schiavi, and C. Bellei, Phys. Plasmas, 14, 052702 (2007).
N. V. Zmitrenko, V. Ya. Karpov, A. P. Fadeev, et al., Vopr. At. Nauki Tekh., Ser. Metody Progr. Chisl. Model. Zadach Matfiz., 2, 38 (1982).
D. A. Kirzhnits and G. V. Shpatakovskaya, J. Exp. Theor. Phys., 81, 679 (1995).
G. V. Shpatakovskaya, JETP Lett., 86, 11 (2007).
N. N. Kalitkin and L. V. Kuzmina, Mat. Model., 10, 111 (1998).
D. G. Hicks, T. R. Boehly, P. M. Celliers, et al., Phys. Rev. B, 79, 014112-1 (2009).
W. J. Nellis, A. C. Mitchell, M. van Thiel, et al., J. Chem. Phys., 79, 1480 (1983).
G. W. Collins, L. B. Da Silva, P. Celliers, et al., “Equation of state measurements of hydrogen isotopes on Nova,” LLNL Preprint UCRL-JC-128201 (1997).
S. A. Bel’kov, S. V. Bondarenko, and E. I. Mitrofanov, Quantum Electron., 30, 963 (2000).
S. P. Lyon and J. D. Johnson, “Sesame: The Los Alamos National Laboratory equation of state database,” Los Alamos, NM, Preprint LAS-UR-92-3407 (1992).
X. Ribeyre, Ph. Nicolaï, G. Schurtz, et al., Plasma Phys. Control. Fusion, 50, 025007 (2008).
V. B. Rozanov, G. A. Vergunova, S. Yu. Gus’kov, et al., “The influence of the irradiation symmetry and the foam absorber on the target compression characteristics for the HiPER,” in: The Sixth International Conference on Inertial Fusion Science and Applications, J. Phys.: Conf. Ser., 244, 022059 (2010).