Effect of the glycine-rich domain in GAREM2 on its unique subcellular localization upon EGF stimulation

Springer Science and Business Media LLC - Tập 26 - Trang 1-11 - 2021
Tasuku Nishino1, Tsuyoshi Oshika2, Moriatsu Kyan2, Hiroaki Konishi2
1Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
2Division of Bioscience and Biotechnology Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan

Tóm tắt

In mammals, there are two subtypes of Grb2-associated regulator of Erk/MAPK (GAREM), an adaptor protein that functions downstream of the cell growth factor receptor. GAREM1 is ubiquitously expressed, whereas GAREM2 is mainly expressed in the brain. However, the precise mechanism of the translocation of each GAREM subtype in growth factor-stimulated cells is still unclear. In this study, immunofluorescence staining with specific antibodies against each GAREM subtype and time-lapse analysis using GFP fusion proteins were used to analyze the subcellular localization of each GAREM subtype in a cell growth stimulus-dependent manner. We also biochemically analyzed the correlation between its subcellular localization and tyrosine phosphorylation of GAREM2. We found that endogenously and exogenously expressed GAREM2 specifically aggregated and formed granules in NGF-stimulated PC-12 cells and in EGF-stimulated COS-7 cells. Based on the observed subcellular localizations of chimeric GAREM1 and GAREM2 proteins, a glycine-rich region, which is present only in GAREM2, is required for the observed granule formation. This region also regulates the degree of EGF-stimulation-dependent tyrosine phosphorylation of GAREM2. Our results, showing that aggregation of GAREM2 in response to EGF stimulation is dependent on a glycine-rich region, suggest that GAREM2 aggregation may be involved in neurodegenerative diseases.

Tài liệu tham khảo

Skaper SD. The neurotrophin family of neurotrophic factors: an overview. Methods Mol Biol. 2012;846:1–12. Park H, Poo MM. Neurotrophine regulation of neural circuit development and function. Nat Rev Neurosci. 2013;14:7–23. Romano R, Bucci C. Role of EGFR in the nervous system. Cells. 2020;9:1887. Shaughness M, Acs D, Brabazon F, Hockenbury N, Byrnes KR. Role of insulin in neurotrauma and neurodegeneration. Front Neurosci. 2020;14:547175. Tavassoly O, Sato T, Tavassoly I. Inhibition of brain epidermal growth factor receptor activation: a novel target in neurodegenerative diseases and brain injuries. Mol Pharmacol. 2020;98:13–22. Flores-Dorantes MT, Díaz-López YE, Gutiérrez-Aguilar R. Environment and gene association with obesity and their impact on neurodegenerative and neurodevelopmental diseases. Front Neurosci. 2020;14:863. Bryan MR, Bowman AB. Manganese and the Insulin-IGF signaling network in Huntington’s disease and other neurodegenerative disorders. Adv Neurobiol. 2017;18:113–42. Tashiro K, Tsunematsu T, Okubo H, Ohta T, Sano E, Yamauchi E, Taniguchi H, Konishi H. GAREM, a novel adaptor protein for growth factor receptor-bound protein 2, contributes to cellular transformation through the activation of extracellularsignal-regulated kinase signaling. J Biol Chem. 2009;284:20206–14. Taniguchi T, Tanaka S, Ishii A, Watanabe M, Fujitani N, Sugeo A, Gotoh S, Ohta T, Hiyoshi M, Matsuzaki H, Sakai N, Konishi H. A brain-specific Grb2-associated regulator of extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) (GAREM) subtype, GAREM2, contributes to neurite outgrowth of neuroblastoma cells by regulating Erk signaling. J Biol Chem. 2013;288:29934–42. Nishino T, Tamada K, Maeda A, Abe T, Kiyonari H, Funahashi Y, Kaibuchi K, Takumi T, Konishi H. Behavioral analysis in mice deficient for GAREM2 (Grb2-associated regulator of Erk/MAPK subtype2) that is a subtype of highly expressing in the brain. Mol Brain. 2019;12:94. Narayanan M, Huynh JL, Wang K, Yang X, Yoo S, McElwee J, Zhang B, Zhang C, Lamb JR, Xie T, Suver C, Molony C, Melquist S, Johnson AD, Fan G, Stone DJ, Schadt EE, Casaccia P, Emilsson V, Zhu J. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Mol Syst Biol. 2014;10:743. Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med. 2004;10:S10-17. Pepeu G, Grazia GM. The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res. 2017;1670:173–84. Sami N, Rahman S, Kumar V, Zaidi S, Islam A, Ali S, Ahmad F, Hassan MI. Protein aggregation, misfolding and consequential human neurodegenerative diseases. Int J Neurosci. 2017;127:1047–57. Park H, Kang JH, Lee S. Autophagy in neurodegenerative diseases: a Hunter for Aggregates. Int J Mol Sci. 2020;21:3369. Wolozin B. Regulated protein aggregation: stress granules and neurodegeneration. Mol Neurodegener. 2012;7:56. Bentmann E, Haass C, Dormann D. Stress granules in neurodegeneration lessons learnt from TAR DNA binding protein of 43 kDa and fused in sarcoma. FEBS J. 2013;280:4348–70. Sun CS, Wang CY, Chen BP, He RY, Liu GC, Wang CH, Chen W, Chern Y, Huang JJ. The influence of pathological mutations and proline substitutions in TDP-43 glycine-rich peptides on its amyloid properties and cellular toxicity. PLoS ONE. 2014;9:e103644. Dewey CM, Cenik B, Sephton CF, Johnson BA, Herz J, Yu G. TDP-43 aggregation in neurodegeneration: are stress granules the key? Brain Res. 2012;1462:16–25. Wolozin B, Ivanov P. Stress granules and neurodegeneration. Nat Rev Neurosci. 2019;20:649–66. Zeng Y, Zhang L, Hu Z. Cerebral insulin, insulin signaling pathway, and brain angiogenesis. Neurol Sci. 2016;37:9–16. Gabbouj S, Ryhänen S, Marttinen M, Wittrahm R, Takalo M, Kemppainen S, Martiskainen H, Tanila H, Haapasalo A, Hiltunen M, Natunen T. Altered insulin signaling in Alzheimer’s disease brain—Special emphasis on PI3K-Akt pathway. Front Neurosci. 2019;13:629. Jiang Q, Chen S, Hu C, Huang P, Shen H, Zhao W. Neuregulin-1 (Nrg1) signaling has a preventive role and is altered in the frontal cortex under the pathological conditions of Alzheimer’s disease. Mol Med Rep. 2016;14:2614–24. Wang L, Chiang HC, Wu W, Liang B, Xie Z, Yao X, Ma W, Du S, Zhong Y. Epidermal growth factor receptor is a preferred target for treating amyloid-β-induced memory loss. Proc Natl Acad Sci U S A. 2012;109:16743–8. Currais A, Fischer W, Maher P, Schubert D. Intraneuronal protein aggregation as a trigger for inflammation and neurodegeneration in the aging brain. FASEB J. 2017;31:5–10. Siddiqui S, Fang M, Ni B, Lu D, Martin B, Maudsley S. Central role of the EGF receptor in neurometabolic aging. Int J Endocrinol. 2012; 739428.