Effect of the acidity and chemical nature of the protonating agent on the rate of acetylene reduction catalyzed by the nitrogenase active site isolated from the enzyme

Kinetics and Catalysis - Tập 53 - Trang 306-312 - 2012
T. A. Bazhenova1, N. V. Kovaleva1, G. N. Petrova1
1Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia

Tóm tắt

The effect of the acidity (pK a) of the source of protons on the rate and selectivity of acetylene reduction has been investigated in order to elucidate the mechanism of protonation of substrate molecules coordinated to the reduced FeMoco cluster. A number of compounds whose pK a in DMF varies between 6 and 20 have been examined as protonating agents. The rate of the reaction is almost independent of the acidity of the proton donor in a wide pK a range. This can be explained in terms of the specific features of substrate protonation catalyzed by iron-sulfur clusters. Active protonating agents in the system are those which react with the catalyst to form hydrogen-bonded association species or those which are ligands reversibly binding to the cluster and are capable of donating protons, likely with simultaneous electron transfer.

Tài liệu tham khảo

Burgess, B.K. and Lowe, D.J., Chem. Rev., 1996, vol. 96, p. 2983. Igarashi, R.Y. and Seefeldt, L.C., Crit. Rev. Biochem. Mol. Biol., 2003, vol. 38, p. 351. Kim, J. and Rees, D.C., Science, 1992, vol. 257, p. 1677. Einsle, O., Tezcan, F.A., Andrade, S.L.A., Schmid, B., Toshida, N., Howard, J.B., and Rees, D.C., Science, 2002, vol. 297, p. 1696; Lancaster, K.M., Roemelt, M., Ettenhuber, P., Hu, Y., Ribbe, M.W., Neese, F., Bergmann, U., Science, 2011, vol. 324, p. 974. Shah, V.K. and Brill, W.J., Proc. Natl. Acad. Sci. U.S.A., 1977, vol. 74, p. 3249. McLenn, P.A., Wink, D.A., and Chapman, S.K., Biochemistry, 1989, vol. 28, p. 9402. Wink, D.A., McLenn, P.A., Hickman, A.B., and Orme-Johnson, W.H., Biochemistry, 1989, vol. 28, p. 9407. Schultz, F.A., Gheller, S.F., and Burgess, B.K., J. Am. Chem. Soc., 1985, vol. 107, p. 5364. Schultz, F.A., Feldman, B.J., Gheller, S.F., and Newton, W.E., Inorg. Chim. Acta, 1990, vol. 170, p. 115. Newton, W.E., Gheller, S.F., and Feldman, B.J., J. Biol. Chem., 1989, vol. 264, p. 1924. Burgess, B.K., Chem. Rev., 1990, vol. 90, p. 1377. Bazhenova, T.A., Bazhenova, M.A., Petrova, G.N., and Shilov, A.E., Kinet. Catal., 1997, vol. 38, no. 2, p. 293. Bazhenova, T.A., Bazhenova, M.A., and Petrova, G.N., Kinet. Catal., 2000, vol. 41, no. 4, p. 499. Bazhenova, T.A., Bazhenova, M.A., Mironova, S.A., Petrova, G.N., Shilova, A.K., Shuvalova, N.I., and Shilov, A.E., Inorg. Chim. Acta, 1997, vol. 270, p. 221. Bazhenova, T.A., Bazhenova, M.A., Petrova, G.N., and Mironova, S.A., Kinet. Catal., 2002, vol. 43, no. 3, p. 351. Bazhenova, M.A., Bazhenova, T.A., Petrova, G.N., and Mironova, S.A., Kinet. Catal., 2002, vol. 43, no. 2, p. 199. Bazhenova, T.A., Bardina, N.V., Petrova, G.N., and Borovinskaya, M.A., Russ. Chem. Bull., 2004, no. 8, p. 1583. Syrtsova, L.A., Popko, E.V., Likhtenshtein, G.I., and Druzhinin, S.Yu., Biokhimiya, 1983, vol. 48, no. 7, p. 1646. Hawkes, T.R. and Smith, B.E., Biochem. J., 1983, vol. 209, no. 1, p. 43. Dilworth, M.J., Eady, R.R., and Eldridge, M., Biochem. J., 1988, vol. 249, p. 745. Didenko, L.P., Gavrilina, O.K., and Yablonskaya, E.E., Nouv. J. Chim., 1983, vol. 7, p. 605. Volynets, V.F. and Volynets, A.P., Analiticheskaya khimiya azota (Analytical Chemistry of Nitrogen), Moscow: Nauka, 1977. Bazhenova, T.A., Bazhenova, M.A., Petrova, G.N., Shilova, A.K., and Shilov, A.E., Izv. Akad. Nauk, Ser. Khim., 1998, no. 11, p. 890. March, J., Advanced Organic Chemistry, New York: Wiley, 1985, 3rd ed. Izutsu, K., Acid-Base Dissociation Constants in Dipolar Aprotic Solvents, Oxford: Blackwell Scientific, 1990. Almeida, V.R., Gormal, C.A., Gronberg, K.L.C., Henderson, R.A., Oglieve, K.E., and Smith, B.E., Inorg. Chim. Acta, 1999, vol. 291, p. 212. Walters, M.A., Chapman, S.K., and Orme-Johnson, W.H., Polyhedron, 1986, vol. 5, nos. 1–2, p. 561. Bates, R.G., Determination of pH: Theory and Practice, New York: Wiley, 1964. Bordwell, F.G., Acc. Chem. Res., 1988, vol. 21, p. 456. Henderson, R.A., Angew. Chem. Int. Ed., 1996, vol. 35, p. 946. Pham, D.N. and Burgess, B.K., Biochemistry, 1993, vol. 32, p. 13725. Dance, I., J. Am. Chem. Soc., 2005, vol. 127, p. 10925. Dance, I., J. Biol. Inorg. Chem., 1996, vol. 1, p. 581. Henderson, R.A., Chem. Rev., 2005, vol. 105, p. 2365. Rod, T.H. and Norskov, J.K., J. Am. Chem. Soc., 2002, vol. 122, p. 12751. Mayer, S.M., Niehaus, W.G., and Dean, D.R., J. Chem. Soc., Dalton Trans., 2002, p. 802. Benton, P.M., Laryukhin, M., Mayer, S.M., Hoffman, B.M., Dean, D.R., and Seefeldt, L.C., Biochemistry, 2003, vol. 42, p. 9102. Barney, B.M., Igarashi, R.Y., Dos Santos, P.C., Dean, D.R., and Seefeldt, L.C., J. Biol. Chem., 2004, vol. 279, p. 53621. Rivera-Ortiz, J.M. and Burris, R.H., J. Bacteriol., 1975, vol. 123, p. 537.