Effect of the Magnetopause and Bow Shock on Characteristics of Plasma Turbulence in the Earth’s Magnetosheath

Pleiades Publishing Ltd - Tập 58 - Trang 718-727 - 2018
L. S. Rakhmanova1, M. O. Riazantseva1, G. N. Zastenker1, M. I. Verigin1
1Space Research Institute of the Russian Academy of Sciences, Moscow, Russia

Tóm tắt

The magnetosheath is a natural laboratory for the study of plasma turbulence. The magnetopause and the bow shock prevent freely development of turbulence and modify turbulent cascade. In this paper, the effect of the magnetosheath boundaries on the forms of frequency spectra of ion flux fluctuations is analyzed based on statistics. In addition, variance in the spectrum characteristics are considered, such as spectral slope at the magnetohydrodynamic (MHD) and kinetic scales, as well as the frequency of transition between these scales when the satellite crosses the magnetosheath. The analysis is based on measurement of the ion flux by the Fast Solar Wind Monitor (BMSW) onboard the Spektr-R satellite with a time resolution of 31 ms. It is shown that the probability of observing spectra of the particular type greatly varies upon crossing of the magnetosheath: standard spectra with two slopes and a distinct breakpoint are observed in most cases in all parts of the magnetosheath, and the probability of their observation is slightly higher upon the approach to the magnetopause; spectra with a peak in the region of transition between the scales (MHD and kinetic) are more often observed closer to the bow shock, and spectra with a plateau in the region of transition between the scales are usually observed closer to the magnetopause. It is revealed that the spectra at the MHD scales immediately behind the bow shock are described by a power function with index –1.3 on average, which noticeably differs from the index of –5/3 predicted by the classical theories. The spectra at the kinetic scales immediately behind the shock wave become steeper than in the solar wind and slightly flatten on the approach to the magnetopause.

Tài liệu tham khảo

Alexandrova, O., Mangeney, A., Maksimovic, M., Cornilleau-Wehrlin, N., Bosqued, J.-M., and André, M., Alfvén vortex filaments observed in magnetosheath downstream of a quasiperpendicular bow shock, J. Geophys. Res., 2006, vol. 111, A12208. doi 10.1029/2006JA011934 Alexandrova, O., Lacombe, C., and Mangeney, A., Spectra and anisotropy of magnetic fluctuations in the Earth’s magnetosheath: Cluster observations, Ann. Geophys., 2008, vol. 26, no. 11, pp. 3585–3596. doi 10.5194/angeo-26-3585-2008 Alexandrova, O., Chen, C.H.K., Sorriso-Valvo, L., Horbury, T.S., and Bale, S.D., Solar wind turbulence and the role of ion instabilities, Space Sci. Rev., 2013, vol. 178, pp. 101–139. Bieber, J.W. and Stone, E.C., Energetic electron bursts in the magnetopause electron layer and in interplanetary space, in Proc. Magnetospheric Boundary Layers Conference, Alpbach, USA, 1979, ESA SP-148, pp. 131–135. Breuillard, H., Yordanova, Y., Vaivads, A., and Alexandrova, O., The effects of kinetic instabilities on small-scale turbulence in Earth’s magnetosheath, Astrophys. J., 2016, vol. 829, no. 1, id 54. doi 10.3847/0004-637X/829/1/54 Bruno, R. and Carbone, V., The solar wind as a turbulence laboratory, Living Rev. Sol. Phys., 2013, vol. 10, doi 10.12942/lrsp-2013-2 Chandran, B.D.G., Quataert, E., Howes, G.G., Xia, Q., and Pongkitiwanichakul, P., Constraining low-frequency Alfvénic turbulence in the solar wind using density-fluctuation measurements, Astrophys. J., 2009, vol. 707, pp. 1668–1675. doi 10.1088/0004-637X/707/2/1668 Chen, C.H.K., Boldyrev, S., Xia, Q., and Perez, J.C., Nature of subproton scale turbulence in the solar wind, Phys. Rev. Lett., 2013, vol. 110, no. 22, 225002. doi 10.1103/PhysRevLett.110.225002 Chen, C.H.K., Leung, L., Boldyrev, S., Maruca, B.A., and Bale, S.D., Ion-scale spectral break of solar wind turbulence at high and low beta, Geophys. Res. Lett., 2014, vol. 41, no. 22, pp. 8081–8088. doi 10.1002/2014GL062009 Czaykowska, A., Bauer, T.M., Treumann, R.A., and Baumjohann, W., Magnetic field fluctuations across the earth’s bow shock, Ann. Geophys., 2001, vol. 19, pp. 275–287. Frisch, U., Turbulence, Cambridge: Cambridge University Press, 1995. Gagua, I.T., Gagua, T.I., and Zastenker, GN., Determination of a solar wind ion flux value and direction using a set of integral Faraday cups for the fast monitor of solar wind, in WDC'09 Proc. of Contributed Papers, Part II: Physics of Plasmas and Ionized Media, Prague, Czech Republic, 2009, pp. 22–29. Galtier, S., Wave turbulence in incompressible hall magnetohydrodynamics, J. Plasma Phys., 2006, vol. 72, no. 5, pp. 721–769. doi 10.1017/S0022377806004521 Greenstadt, E.W., Observation of nonuniform structure of the Earth’s bow shock correlated with interplanetary field orientation, J. Geophys. Res., 1972, vol. 77, no. 10, 1029. doi 10.1029/JA077i010p01729 Gutynska, O., Šafránková, J., and Němeček, Z., Correlation properties of magnetosheath magnetic field fluctuations, J. Geophys. Res., 2009, vol. 114, no. A8, A08207. doi 10.1029/2009JA014173 Howes, G.G., Bale, S.D., Klein, K.G., Chen, C.H.K., Salem, C.S., and Tenbarge, J.M., The slow-mode nature of compressible wave power in solar wind turbulence, Astrophys. J. Lett., 20112, vol. 753, no. 1, L19. doi 10.1088/2041-8205/753/1/L19 Huang, S.Y., Hadid, L.Z., Sahraoui, F., Yuan, Z.G., and Deng, X.H., On the existence of the Kolmogorov inertial range in the terrestrial magnetosheath turbulence, Astrophys. J. Lett., 2017, vol. 836, no. 1, L10. doi 10.3847/2041-8213/836/1/L10 Kolmogorov, A.N., The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad. Nauk SSSR, 1941, vol. 30, no. 4, pp. 299–303. Kozak, L.V., Pilipenko, V.A., Chugunova, O.M., and Kozak, P.N., Statistical analysis of turbulence in the foreshock region and in the Earth’s magnetosheath, Cosmic Res., 2011, vol. 49, no. 3, pp. 194–204. Lacombe, C. and Belmont, G., Waves in the Earth’s magnetosheath: Observations and interpretations, Adv. Space Res., 1995, vol. 15, nos. 8–9, pp. 329–340. doi 10.1016/0273-1177(94)00113-F Nikolaeva, N.S., Zastenker, G.N., Šafránková, J., Němeček, Z., Nozdrachev, M.N., Romanov, S.A., Yermolaev, Yu.I., and Eismont, N.A., On sources and amplitude of magnetopause motion, Cosmic Res., 1998, vol. 36, no. 6, pp. 537–548. Pitña, A., Šafránková, J., Němeček, Z., Goncharov, O., Nĕmec, F., Přech, L., Chen, C.H.K., and Zastenker, G.N., Density fluctuations upstream and downstream of interplanetary shocks, Astrophys. J., 2016, vol. 819, id 41. doi 10.3847/0004-637X/819/1/41 Rakhmanova, L., Riazantseva, M., and Zastenker, G., Plasma fluctuations at the flanks of the Earth’s magnetosheath at ion kinetic scales, Ann. Geophys., 2016, vol. 34, pp. 1011–1018. Rakhmanova, L., Riazantseva, M., Zastenker, G., and Yermolaev, Yu., High-frequency plasma fluctuations in the middle magnetosheath and near its boundaries: Spektr-R observations, J. Plasma Phys., 2017, vol. 83, 705830204. doi 10.1017/S002237781700023X Rezeau, L., Belmont, G., Cornilleau-Wehrlin, N., and Reberac, F., Spectral law and polarization properties of the low frequency waves at the magnetopause, Geophys. Res. Lett., 1999, vol. 26, no. 6, pp. 651–654. doi 10.1029/1999GL900060 Riazantseva, M.O., Budaev, V.P., Zelenyi, L.M., Zastenker, G.N., Pavlos, G.P., Šafránková, J., Němeček, Z., Přech, L., and Nĕmec, F., Dynamic properties of small scale solar wind plasma fluctuations, Philos. Trans. R. Soc. A, 2015, vol. 373, 20140146. doi 10.1098/rsta.2014.0146 Riazantseva, M.O., Budaev, V.P., Rakhmanova, L.S., Zastenker, G.N., Šafránková, J., Němeček, Z., and Přech, L., Comparison of properties of small scale ion flux fluctuations in flank magnetosheath and in solar wind, Adv. Space Res., 2016, vol. 58, no. 2, pp. 166–174. Riazantseva, M.O., Budaev, V.P., Rakhmanova, L.S., Zastenker, G.N., Šafránková, J., Němeček, Z., and Přech, L., Variety of shapes of solar wind ion flux spectra: Spektr-R measurements, J. Plasma Phys., 2017, vol. 83, no. 4, 705830401. doi 10.1017/S0022377817000502 Riazantseva, M.O., Rakhmanova, L.S., Zastenker, G.N., and Yermolaev, Yu.I., T Types of spectra of ion flux fluctuations in the solar wind and magnetosheath at the interface between inertial and dissipative ranges, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 1, pp. 1–7. Šafránková, J., Němeček, Z., Přech, L., et al., Fast solar wind monitor (BMSW): Description and first results, Space Sci. Rev., 2013, vol. 175, pp. 165–182. Šafránková, J., Němeček, Z., Nĕmec, F., Přech, L., Pitña, A., Chen, C.H.K., and Zastenker, G., Solar wind density spectra around the ion spectral break, Astrophys. J., 2015, vol. 803, id 107. doi 10.1088/0004-637X/803/2/107 Šafránková, J., Němeček, Z., Nĕmec, F., Přech, L., Chen, C.H.K., and Zastenker, G., Power spectral density of fluctuations of bulk and thermal speeds in the solar wind, Astrophys. J., 2016, vol. 825, id 121. doi 10.3847/0004-637X/825/2/121 Sahraoui, F., Belmont, G., Rezeau, L., and Cornilleau-Wehrlin, N. Anisotropic turbulent spectra in the terrestrial magnetosheath as seen by the Cluster spacecraft, Phys. Rev. Lett., 2006, vol. 96, no. 7, 075002. doi 10.1103/PhysRevLett.96.075002 Schekochihin, A.A., Cowley, S.C., Dorland, W., Hammett, G.W., Howes, G.G., Quataert, E., and Tatsuno, T., Astrophysical gyrokinetics: Kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas, Astrophys. J., Suppl. Ser., 2009, vol. 182, pp. 310–377. Schwartz, S.J., Burgess, D., and Moses, J.J., Low-frequency waves in the Earth’s magnetosheath: present status, Ann. Geophys., 1996, vol. 14, pp. 1134–1150. Shevyrev, N. and Zastenker, G., Some features of plasma flow in the magnetosheath behind the quasi-parallel and quasi-perpendicular bow shocks, Planet. Space Sci., 2005, vol. 53, pp. 95–102. Shevyrev, N., Zastenker, G.N., Nozdrachev, M.N., Němeček, Z., Šafránková, J., and Richardson, J.D., High and low frequency large amplitude variations of plasma and magnetic field in the magnetosheath: Radial profile and some features, Adv. Space Res., 2003, vol. 31, no. 5, pp. 1389–1394. Shue, J.-H., Chao, J.K., Fu, H.C., Khurana, K.K., Russell, C.T., Singer, H.J., and Song, P., Magnetopause location under extreme solar wind conditions, J. Geophys. Res., vol. 103, no. A8, pp. 17691–17700. doi 10.1029/98JA01103 Spreiter, J.R., Summers, A.L., and Alksne, A.Y., Hydromagnetic flow around the magnetosphere, Planet. Space Sci., 1966, vol. 14, pp. 223–253. Tu, C.-Y. and Marsch, E., MHD structures, waves and turbulence in the solar wind: Observations and theories, Space Sci. Rev., 1995, vol. 73, nos. 1–2, pp. 1–210. doi 10.1007/BF00748891 Verigin, M.I., Kotova, G.A., Slavin, J., Szabo, A., Kessel, M., Šafránková, J., Němeček, Z., Gombosi, T.I., Kabin, K., Shugaev, F., and Kalinchenko, A., Analysis of the 3-D shape of the terrestrial bow shock by Interball/Magion 4 observations, Adv. Space Res., 2001, vol. 28, no. 6, pp. 857–862. Verigin, M.I., Tátrallyay, M., Erdős, G., and Kotova, G.A., Magnetosheath interplanetary medium reference frame: application for a statistical study of mirror type waves in the terrestrial plasma environment, Adv. Space Res., 2006, vol. 37, no. 3, pp. 515–521. doi 10.1016/j.asr.2005.03.042 Zastenker, G.N., Šafránková, J., Němeček, Z., et al., Fast measurements of parameters of the solar wind using the BMSW instrument, Cosmic Res., 2013, vol. 51, no. 2, pp. 78–89.