Effect of the Machining Method on the Catalycity and Emissivity of ZrB2 and ZrB2–HfB2‐Based Ceramics

Journal of the American Ceramic Society - Tập 91 Số 5 - Trang 1461-1468 - 2008
L. Scatteia1, Davide Alfano1, F. Monteverde2, Jean‐Louis Sans3, Marianne Balat‐Pichelin3
1CIRA—Centro Italiano Ricerche Aerospaziali, Capua (CE) 81043, Italy
2CNR-ISTEC, Consiglio Nazionale delle Ricerche, Istituto di Scienza e Tecnologia dei Materiali Ceramici, Faenza 48018, Italy
3PROMES-CNRS, Processes, Materials and Solar Energy Laboratory, Font-Romeu Odeillo 66120, France

Tóm tắt

The emissivity and the catalytic efficiency related to atomic oxygen recombination were investigated experimentally in the range 1000–2000 K for ZrB2 and ZrB2–HfB2‐based ceramics. In order to evaluate the effect of the machining method, two series of samples, one prepared by electrical discharge machining and the other machined by diamond‐loaded tools, were tested. High emissivity (about 0.7 at 1700 K) and low recombination coefficients (on average 0.08 at 1800 K) were found for all the materials. The experimental data showed an effect of the surface machining on the catalytic behavior only on the ZrB2‐based composite; conversely, small variations were found in the recombination coefficients of ZrB2–HfB2‐based samples for the different machining processes. The surface finish affected the emissivity at lower temperatures in both compositions, with the effect becoming negligible at temperatures above 1500 K.

Từ khóa


Tài liệu tham khảo

10.1111/j.1551-2916.2007.01583.x

Mroz C., 1994, Zirconium Diboride, Am. Ceram. Soc. Bull., 73, 141

Upadhya K., 1997, Materials for Ultra‐High Temperature Structural Applications, Am. Ceram. Soc. Bull., 58, 51

10.1023/B:JMSC.0000041689.90456.af

10.1016/S0254-0584(01)00486-2

Loehman R., 2004, Ultrahigh Temperature Ceramics for Hypersonic Vehicle Applications, Ind. Heating, 71, 36

Chamberlain A., 2005, Oxidation of ZrB2–SiC Ceramics Under Atmospheric and Reentry Conditions, Refractory Appl. Trans., 1, 1

10.1016/S0921-5093(02)00520-8

10.1007/s00339-005-3327-9

10.1016/j.solidstatesciences.2005.02.007

10.1016/j.jeurceramsoc.2004.05.009

10.1016/S0955-2219(99)00129-6

10.1016/S0955-2219(01)00284-9

10.1111/j.1551-2916.2004.01170.x

10.1557/JMR.2004.0460

Opeka M., 2004, Oxidation‐Based Materials Selection for 2000°C+Hypersonic Aerosurface, Theorethical Considerations and Historical Experience, 39, 5887

Fahrenholtz W. G., 2007, Thermodynamic Analysis of ZrB2–SiC Oxidation, Formation of a SiC-Depleted Region, 90, 143

10.1111/j.1551-2916.2005.00599.x

Hinze J., 1973, The High‐Temperature Behavior of a HfB2+20 v/o SiC Composite, Solid-State Science and Technology, 122, 1249

Tripp W., 1973, Effect of an SiC Addition on the Oxidation of ZrB2, Am. Ceram. Soc. Bull., 52, 612

10.1149/1.1618226

10.1111/j.1551-2916.2007.01589.x

10.1016/J.MSEA.2007.08.054

10.1007/BF01113887

10.2514/1.2879

10.2514/1.21156

10.1115/1.1488164

10.1016/S0169-4332(01)00351-8

10.1016/j.apsusc.2004.09.106

10.1063/1.1851497

10.1016/S0301-0104(03)00152-6

10.1016/S0955-2219(02)00140-1

10.1023/B:JMSC.0000041691.41116.bf

10.2514/2.3442

10.2514/3.262

10.2514/3.11547

10.2514/3.11569

10.2514/3.565

Cartry G., 2000, Atomic Oxygen Recombination on Fused Silica, Modelling and Comparison to Low-Temperature Experiments (300 K), 33, 1303

10.1016/j.chemphys.2007.09.019