Ảnh Hưởng của Hệ Số Đến Hiệu Suất của Mô Hình Boussinesq Loại Hai Lớp

China Ocean Engineering - Tập 35 - Trang 36-47 - 2021
Jia-wen Sun1, Zhong-bo Liu2, Xing-gang Wang3, Ke-zhao Fang4, Xin-yuan Du5, Ping Wang1
1State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian, China
2Transportation Engineering College, Dalian Maritime University, Dalian, China
3Nanjing Hydraulic Research Institute, Nanjing, China
4State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, China
5Liaoning natural resources Affairs Service Center, Shenyang, China

Tóm tắt

Các hệ số được thể hiện trong mô hình loại Boussinesq rất quan trọng vì chúng được xác định để tối ưu hóa các thuộc tính tuyến tính và phi tuyến. Trong hầu hết các mô hình loại Boussinesq thông thường, các hệ số này được gán các giá trị cụ thể. Tuy nhiên, đối với các mô hình Boussinesq loại đa lớp có sự bao gồm của vận tốc thẳng đứng, tác động của các giá trị khác nhau của các hệ số này lên hiệu suất tuyến tính và phi tuyến chưa bao giờ được điều tra. Nghiên cứu hiện tại tập trung vào một mô hình Boussinesq loại hai lớp với các đạo hàm không gian cao nhất là 2 và xem xét lý thuyết cũng như thực nghiệm tác động của hệ số a lên hiệu suất mô hình. Phân tích lý thuyết cho thấy rằng các giá trị khác nhau cho α (0.13⩽α⩽0.25) không có tác động lớn đến độ chính xác cao của sự giảm sóng tuyến tính, tốc độ pha tuyến tính và thậm chí phi tuyến độ bậc ba cho khoảng sâu nước 0

Từ khóa

#mô hình Boussinesq #hệ số #hiệu suất #sóng tuyến tính #phi tuyến

Tài liệu tham khảo

Agnon, Y., Madsen, P.A. and Schäffer, H.A., 1999. A new approach to high-order Boussinesq models, Journal of Fluid Mechanics, 399, 319–333. Baldock, T.E., Swan, C. and Taylor, P.H., 1996. A laboratory study of nonlinear surface waves on water, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 354(1707), 649–676. Beji, S. and Nadaoka, K., 1996. A formal derivation and numerical modelling of the improved Boussinesq equations for varying depth, Ocean Engineering, 23(8), 691–704. Benoit, M., Raoult, C. and Yates, M.L., 2017. Analysis of the linear version of a highly dispersive potential water wave model using a spectral approach in the vertical, Wave Motion, 74, 159–181. Bingham, H.B. and Zhang, H., 2007. On the accuracy of finite-difference solutions for nonlinear water waves, Journal of Engineering Mathematics, 58(1–4), 211–228. Bingham, H.B., Madsen, P.A. and Fuhrman, D.R., 2009. Velocity potential formulations of highly accurate Boussinesq-type models, Coastal Engineering, 56(4), 467–478. Brocchini, M., 2013. A reasoned overview on Boussinesq-type models: the interplay between physics, mathematics and numerics, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469(2160), 20130496. Chazel, F., Benoit, M., Ern, A. and Piperno, S., 2009. A double-layer Boussinesq-type model for highly nonlinear and dispersive waves, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 465(2108), 2319–2346. Chen, Y.Z. and Liu, P.L.F., 1995. Modified Boussinesq equations and associated parabolic models for water wave propagation, Journal of Fluid Mechanics, 288, 351–381. Galan, A., Simarro, G., Orfila, A. and Simarro, J., 2012. Fully nonlinear model for water wave propagation from deep to shallow waters, Journal of Waterway, Port, Coastal, and Ocean Engineering, 138(5), 362–371. Gobbi, M.F., Kirby, J.T. and Wei, G.E., 2000. A fully nonlinear Boussinesq model for surface waves. Part 2: Extension to O(kh)4, Journal of Fluid Mechanics, 405, 181–210. Hsiao, S.C., Lynett, P., Hwung, H.H. and Liu, P.L.F., 2005. Numerical simulations of nonlinear short waves using a multilayer model, Journal of Engineering Mechanics, 131(3), 231–243. Kennedy, A.B., Kirby, J.T., Chen, Q. and Dalrymple, R.A., 2001. Boussinesq-type equations with improved nonlinear performance, Wave Motion, 33(3), 225–243. Kirby, J.T., 2003. Boussinesq models and applications to nearshore wave propagation, surf zone processes and wave-induced currents, Elsevier Oceanography Series, 67(1), 1–42. Kirby, J.T., 2016. Boussinesq models and their application to coastal processes across a wide range of scales, Journal of Waterway, Port, Coastal, and Ocean Engineering, 142(6), 03116005. Liu, Z.B. and Fang, K.Z., 2015. Two-layer Boussinesq models for coastal water waves, Wave Motion, 57, 88–111. Liu, Z.B. and Fang, K.Z., 2016. A new two-layer Boussinesq model for coastal waves from deep to shallow water: Derivation and analysis, Wave Motion, 67, 1–14. Liu, Z.B. and Fang, K.Z., 2019. Numerical verification of a two-layer Boussinesq-type model for surface gravity wave evolution, Wave Motion, 85, 98–113. Liu, Z.B., Fang, K.Z. and Cheng, Y.Z., 2018. A new multi-layer irrotational Boussinesq-type model for highly nonlinear and dispersive surface waves over a mildly sloping seabed, Journal of Fluid Mechanics, 842, 323–353. Liu, Z.B., Fang, K.Z. and Sun, J.W., 2019. A multi-layer Boussinesq-type model with second-order spatial derivatives: Theoretical analysis and numerical implementation, Ocean Engineering, 191, 106545. Liu, Z.B. and Sun, Z.C., 2005. Two sets of higher-order Boussinesq-type equations for water waves, Ocean Engineering, 32(11–12), 1296–1310. Luth, H.R., Klopman, G. and Kitou, N., 1994. Project 13G: Kinematics of Waves Breaking Partially on an Offshore bar; LDV Measurements for Waves with and without a net Onshore Current. Report H-1573 Delft Hydraulics, Delft. Lynett, P., 2002. A Multi-Layer Approach to Modeling Generation, Propagation, and Interaction of Water Waves, Ph.D. Thesis, Cornell University. Lynett, P. and Liu, P.L.F., 2004a. A two-layer approach to wave modelling, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 460(2049), 2637–2669. Lynett, P.J. and Liu, P.L.F., 2004b. Linear analysis of the multi-layer model, Coastal Engineering, 51(5–6), 439–454. Madsen, P.A., Murray, R. and Sørensen, O.R., 1991. A new form of the Boussinesq equations with improved linear dispersion characteristics, Coastal Engineering, 15(4), 371–388. Madsen, P.A. and Sørensen, O.R, 1992. A new form of the Boussinesq equations with improved linear dispersion characteristics. Part 2. A slowly-varying bathymetry, Coastal Engineering, 18(3–4), 183–204. Madsen, P.A. and Schäffer, H.A., 1998. Higher-order Boussinesq-type equations for surface gravity waves: Derivation and analysis, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 356(1749), 3123–3184. Madsen, P.A. and Schäffer, H.A., 1999. A review of Boussinesq-type equations for surface gravity waves, Advances in Coastal and Ocean Engineering, 5, 1–94. Madsen, P.A., Bingham, H.B. and Liu, H., 2002. A new Boussinesq method for fully nonlinear waves from shallow to deep water, Journal of Fluid Mechanics, 462, 1–30. Madsen, P.A., Bingham, H.B. and Schäffer, H.A., 2003. Boussinesq-type formulations for fully nonlinear and extremely dispersive water waves: Derivation and analysis, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 459(2033), 1075–1104. Madsen, P.A., Fuhrman, D.R. and Wang, B.L., 2006. A Boussinesq-type method for fully nonlinear waves interacting with a rapidly varying bathymetry, Coastal Engineering, 53(5–6), 487–504. Madsen, P.A. and Fuhrman, D.R., 2010. High-order Boussinesq-type modelling of nonlinear wave phenomena in deep and shallow water, in: Ma, C.C. (ed.), Advances in Numerical Simulation of Nonlinear Water Waves, 245–285. Nwogu, O., 1993. Alternative form of Boussinesq equations for nearshore wave propagation, Journal of Waterway, Port, Coastal, and Ocean Engineering, 19(6), 618–638. Peregrine, D.H., 1967. Long waves on a beach, Journal of Fluid Mechanics, 27(4), 815–827. Schäffer, H.A. and Madsen, P.A., 1995. Further enhancements of Boussinesq-type equations, Coastal Engineering, 26(1–2), 1–14. Simarro, G., Orfila, A. and Galan, A., 2013. Linear shoaling in Boussinesq-Type wave propagation models, Coastal Engineering, 80, 100–106. Stansberg, C.T., 1993. Propagation-Dependent Spatial Variations Observed in Wave Trains Generated in A Long Wave Tank, Technical Report No. MT49 A93-0176, Marintek. Wei, G., Kirby, J.T., Grilli, S.T. and Subramanya, R., 1995. A fully nonlinear Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves, Journal of Fluid Mechanics, 294, 71–92. Witting, J. M., 1984. A unified model for the evolution of nonlinear water waves, Journal of Computational Physics, 56(2), 203–236. Zhao, M., Teng, B. and Cheng, L., 2004. A new form of generalized Boussinesq equations for varying water depth, Ocean Engineering, 31(16), 2047–2072. Zou, Z.L., 1999. Higher order Boussinesq equations, Ocean Engineering, 26(8), 767–792. Zou, Z.L., 2000. A new form of higher order Boussinesq equations, Ocean Engineering, 27(5), 557–575. Zou, Z.L. and Fang, K.Z., 2008. Alternative forms of the higher-order Boussinesq equations: Derivations and validations, Coastal Engineering, 55(6), 506–521.