Effect of the AZOBR_p60123 Plasmid Gene Encoding the Wzt Protein on Lipopolysaccharide Synthesis and Biofilm Formation in the Bacterium Azospirillum baldaniorum Sp245

L. N. Petrova1, С. С. Евстигнеева1, Yulia A. Filip’echeva1, I. V. Volokhina1, Gennady L. Burygin1, L. Yu. Matora1, А. В. Шелудько1
1Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Center, Russian Academy of Sciences, Saratov, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Atabek, A. and Camesano, T.A., Atomic force microscopy study of the effect of lipopolysaccharides and extracellular polymers on adhesion of Pseudomonas aeruginosa, J. Bacteriol., 2007, vol. 18, pp. 8503‒8509. https://doi.org/10.1128/JB.00769-07

Camesano, T.A and Abu-Lail, N.I., Heterogeneity in bacterial surface polysaccharides, probed on a single-molecule basis, Biomacromolecules, 2002, vol. 3, pp. 661–667. https://doi.org/10.1021/bm015648y

Döbereiner, J. and Day, J.M., Associative symbiosis in tropical grass: characterization of microorganisms and dinitrogen fixing sites, Symposium on Nitrogen Fixation, Newton, W.E. and Nijmans, C.J., Eds., Pullman: Washington State Univ. Press, 1976, pp. 518–538. https://doi.org/10.12691/aees-4-4-1

Dos Santos Ferreira, N., Sant’Anna, F.H., Reis, V.M., Ambrosini, A., Volpiano, C.G., Rothballer, M., Schwab, S., Baura, V.A., Balsanelli, E., de Oliveira Pedrosa, F., Passaglia, L.M.P., de Souza, E.M., Hartmann, A., Cassan, F., and Zilli, J.A., Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov., Int. J. Syst. Evol. Microbiol., 2020, vol. 70. https://doi.org/10.1099/ijsem.0.004517

Fedonenko, Y.P., Zatonsky, G.V., Konnova, S.A., Zdo-rovenko, E.L., and Ignatov, V.V., Structure of the O-specific polysaccharide of the lipopolysaccharide of Azospirillum brasilense Sp245, Carbohydr. Res., 2002, vol. 337, pp. 869–872. https://doi.org/10.1016/s0008-6215(02)00061-7

Fedonenko, Yu.P., Zdorovenko, E.L., Konnova, S.A., Ignatov, V.V., and Shlyakhtin, G.V., A comparison of the lipopolysaccharides and O-specific polysaccharides of Azospirillum brasilense Sp245 and its Omegon-Km mutants KM018 and KM252, Microbiology (Moscow), 2004, vol. 73, pp. 143–149.

Figurski, D.H. and Helinski, D.R., Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans, Proc. Natl. Acad. Sci. U. S. A., 1979, vol. 76, pp. 1648–1652. https://doi.org/10.1073/pnas.76.4.1648

Hendriksen, N.B., Microbial biostimulants—the need for clarification in EU regulation, Trends Microbiol., 2022, vol. 30, pp. 311‒313. https://doi.org/10.1016/j.tim.2022.01.008

Hitchcock, P.J. and Brown, T.M., Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels, J. Bacteriol., 1983, vol. 154, pp. 269‒277. https://doi.org/10.1128/jb.154.1.269-277.1983

Hoang, T.T., Karkhoff-Schweizer, R.R., Kutchma, A.J., and Schweizer, H.P., A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants Gene, 1998, vol. 212, pp. 77–86. https://doi.org/10.1016/s0378-1119(98)00130-9

Holguin, G. and Glick, B.R., Expression of the ACC dea-minase gene from Enterobacter cloacae UW4 in Azospirillum brasilense, Microb. Ecol., 2001, vol. 41, pp. 281–288. https://doi.org/10.1007/s002480000040

Jucker, B.A., Harms, H., Hug, S.J., and Zehnder, A.J.B., Adsorption of bacterial surface polysaccharides on mineral oxides is mediated by hydrogen bonds, Colloids Surf. B Biointerfaces, 1997, vol. 9, pp. 331–343. https://doi.org/10.1016/S0927-7765(97)00038-6

Katzy, E.I., Matora, L.Y., Serebrennikova, O.B., and Scheludko, A.V., Involvement of a 120-MDa plasmid of Azospirillum brasilense Sp245 in production of lipopolysaccharides, Plasmid, 1998, vol. 40, pp. 73–83. https://doi.org/10.1006/plas.1998.1353

Keen, N.T., Tamaki, S., Kobayashi, D., and Trollinger. D., Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria, Gene, 1980, vol. 70, pp. 191–197. https://doi.org/10.1016/0378-1119(88)90117-5

Kumar, S., Rai, A.K., Mishra, M.N., Shukla, M., Singh, P.K., and Tripathi, A.K., RpoH2 sigma factor controls the photooxidative stress response in a nonphotosynthetic rhizobacterium, Azospirillum brasilense Sp7, Microbiology (SGM), 2012, vol. 158, pp. 2891–2902. https://doi.org/10.1099/mic.0.062380-0

Lerner, A., Okon, Y., and Burdman, S., The wzm gene located on the pRhico plasmid of Azospirillum brasilense Sp7 is involved in lipopolysaccharide synthesis, Microbiology (SGM), 2009, vol. 155, pp. 791–804. https://doi.org/10.1099/mic.0.021824-0

Liston, S.D., Mann, E., and Whitfield, C., Glycolipid substrates for ABC transporters required for the assembly of bacterial cell-envelope and cell-surface glycoconjugates, Biochim. Biophys. Acta, 2017, vol. 1862, pp. 1394–1403. https://doi.org/10.1016/j.bbalip.2016.10.008

Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT Method, Methods, 2001, vol. 25, pp. 402–408. https://doi.org/10.1006/meth.2001.1262

Matora, L.Y. and Shchegolev, S.Y., Antigenic identity of the capsule lipopolysaccharides, exopolysaccharides, and O-specific polysaccharides in Azospirillum brasilense, Microbiology (Moscow), 2002, vol. 71, pp. 178–181. https://doi.org/10.1023/A:1015146104397

Matora, L.Yu., Shvartsburd, B.I., and Shchegolev, S.Yu., Immunochemical analysis of O-specific polysaccharides from the soil nitrogen-fixing bacteria Azospirillum brasilense, Microbiology (Moscow), 1998, vol. 67, pp. 677–681.

Nakao, R., Senpuku, H., and Watanabe, H., Porphyromonas gingivalis galE is involved in lipopolysaccharide O-antigen synthesis and biofilm formation, Infect. Immun., 2006, vol. 74, pp. 6145–6153. https://doi.org/10.1128/IAI.00261-06

Ouchterlony, O. and Nilsson, L.A., Immunodiffusion and immunoelectrophoresis, in Handbook of Experimental Immunology, Weiz, D.M., Ed., Oxford: Alden, 1979, vol. 1, pp. 19–33.

Petrova, L.P., Prilipov, A.G., and Katsy, E.I., Detection of putative polysaccharide biosynthesis genes in Azospirillum brasilense strains from serogroups I and II, Russ. J. Genet., 2017, vol. 53, pp. 39–48. https://doi.org/10.1134/S1022795416110107

Petrova, L.P., Yevstigneeva, S.S., Borisov, I.V., Shelud’ko, A.V., Burygin, G.L, and Katsy, E.I., Plasmid gene AZO-BR_p60126 impacts biosynthesis of lipopolysaccharide II and swarming motility in Azospirillum brasilense Sp245, J. Basic Microbiol., 2020, vol. 60, pp. 613–623. https://doi.org/10.1002/jobm.201900635

Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, N.Y.: Cold Spring Harbor Laboratory, 1989, 2nd ed.

Shelud’ko, A.V., Filip’echeva, Y.A., Shumilova, E.M., K-hlebtsov, B.N., Burov, A.M., Petrova, L.P., and Katsy, E.I., Changes in biofilm formation in the nonflagellated flhB1 mutant of Azospirillum brasilense Sp245, Microbiology (Moscow), 2015, vol. 84, pp. 144–151. https://doi.org/10.1134/S0026261715010129

Shelud’ko, A.V., Filip’echeva, Y.A., Telesheva, E.M., Burov, A.M., Evstigneeva, S.S., Burygin, G.L., and Petrova, L.P., Characterization of carbohydrate-containing components of Azospirillum brasilense Sp245 biofilms, Microbiology (Moscow), 2018, vol. 87, pp. 610–620. https://doi.org/10.1134/S0026261718050156

Sheludko, A.V., Kulibyakina, O.V., Shirokov, A.A., Petrova, L.P., Matora, L.Yu., and Katsy, E.I., The effect of mutations affecting synthesis of lipopolysaccharides and calcofluor-binding polysaccharides on biofilm formation by Azospirillum brasilense, Microbiology (Moscow), 2008, vol. 77, pp. 313–317. https://doi.org/10.1134/S0026261708030107

Valvano, M.A., Furlong, S.E., and Patel, K.B., Genetics, biosynthesis and assembly of O-antigen, in Bacterial Lipopolysaccharides: Structure, Chemical Synthesis, Biogenesis and Interaction with Host Cells, Knirel, Y.A. and Valvano, M.A., Eds., Wien: Springer, 2011, pp. 275–310. https://doi.org/10.1016/j.carres.2003.07.009

Vieira, J. and Messing, J., The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers, Gene, 1982, vol. 19, pp. 259–268. https://doi.org/10.1016/0378-1119(82)90015-4

Wisniewski-Dyé, F., Borziak, K., Khalsa-Moyers, G., Al-exandre, G., Sukharnikov, L.O., Wuichet, K., Hurst, G.B., McDonald, W.H., Robertson, J.S., Barbe, V., Calteau, A., Rouy, Z., Mangenot, S., Prigent-Combaret, C., Normand, P., et al., Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments, PLoS Genet., 2011, vol. 7, p. e1002430. https://doi.org/10.1371/journal.pgen.1002430

Yevstigneyeva, S.S., Sigida, E.N., Fedonenko, Y.P., Konnova, S.A., and Ignatov, V.V., Structural properties of capsular and O-specific polysaccharides of Azospirillum brasilense Sp245 under varying cultivation conditions, Microbiology (Moscow), 2016, vol. 85, pp. 664–671. https://doi.org/10.1134/S0026261716060096

Zdorovenko, E.L., Shashkov, A.S., Zhurina, M.V., Plakunov, V.K., and Knirel, Y.A., Structure of the O-specific polysaccharides from planktonic and biofilm cultures of Pseudomonas chlororaphis 449, Carbohydr. Res., 2015, vol. 404, pp. 93‒97. https://doi.org/10.1016/j.carres.2014.10.020