Effect of temperature on photosynthesis‐light response and growth of four phytoplankton species isolated from a tidal freshwater river

Journal of Phycology - Tập 36 Số 1 - Trang 7-16 - 2000
James F. Coles1,2,3, R. Christian Jones1
1Department of Biology, George Mason University, Fairfax, VA 22030
2Present address and author for reprint requests: U.S. Geological Survey, 10 Bearfoot Road, Northborough, MA 01532
3e-mail: [email protected]

Tóm tắt

Three cyanobacteria (Microcystis aeruginosaKütz. emend. Elenkin,Merismopedia tenuissimaLemmermann, andOscillatoriasp.) and one diatom (Aulacoseira granulatavar.angustissimaO. Mull. emend. Simonsen) were isolated from the tidal freshwater Potomac River and maintained at 23° C and 40 μmol photons·m−2·s−1on a 16:8 L:D cycle in unialgal culture. Photosynthetic parameters were determined in nutrient‐replete cultures growing exponentially at 15, 20, 25, and 30° C by incubation with14C at six light levels.P  Bmaxwas strongly correlated with temperature over the entire range for the cyanobacteria and from 15 to 25° C forAulacoseira, withQ10ranging from 1.79 to 2.67. The α values demonstrated a less consistent temperature pattern. Photosynthetic parameters indicated an advantage for cyanobacteria at warmer temperatures and in light‐limited water columns.P  BmaxandIkvalues were generally lower than comparable literature and field values, whereas α was generally higher, consistent with a somewhat shade acclimated status of our cultures. Specific growth rate (μ), as measured by chlorophyll change, was strongly influenced by temperature in all species.Oscillatoriahad the highest μ at all temperatures, joined at lower temperatures byAulacoseiraand at higher temperatures byMicrocystis.Values of μ forAulacoseirawere near the low end of the literature range for diatoms consistent with the light‐limited status of the cultures. The cyanobacteria exhibited growth rates similar to those reported in other studies.Q10for growth ranged from 1.71 forAulacoseirato 4.16 forMicrocystis.Growth rate was highly correlated withP  Bmaxfor each species and the regression slope coefficients were very similar for three of the species.

Từ khóa


Tài liệu tham khảo

10.1007/BF00387494

10.1007/BF00036611

10.1093/plankt/13.4.707

10.1111/j.1529-8817.1982.tb03175.x

Corbett L. L., 1976, Viability of lyophilized cyanobacteria (blue‐green algae)., Appl. Environ. Microbiol, 32, 777, 10.1128/aem.32.6.777-780.1976

10.4319/lo.1983.28.2.0320

10.1111/j.1529-8817.1987.tb04135.x

10.1111/j.0022-3646.1991.00002.x

10.1111/j.1529-8817.1974.tb02702.x

10.1007/BF00399206

10.1111/j.0022-3646.1991.00008.x

10.1007/BF00391815

10.1111/j.0022-3646.1984.00067.x

10.1098/rspb.1969.0045

10.1080/00071617600650181

10.1080/01621459.1978.10480084

10.1007/978-1-4757-2153-9

Harris G. P., 1978, Photosynthesis, productivity, and growth: the physiological ecology of phytoplankton., Arch. Hydrobiol. Beih. Ergebn. Limnol, 10, 1

10.4319/lo.1981.26.4.0622

10.1016/S0302-3524(81)80028-X

Jones R. C., 1991, Spatial and temporal patterns in a cyanobacterial phytoplankton bloom in the tidal freshwater Potomac River, USA., Verh. Int. Verein. Limnol, 24, 1698

10.1023/A:1003107306421

Jones R. C., 1992, Spatial, seasonal, and interannual patterns in the phytoplankton communities of a tidal freshwater ecosystem., Va. J. Sci, 43, 25

Jones R. C., 1989, An Ecological Study of Gunston Cove, 1988–1989. Final report submitted to the Department of Public Works, 288

10.1093/plankt/10.4.813

Konopka A., 1978, Effect of temperature on blue‐green algae (Cyanobacteria) in Lake Mendota., Appl. Environ. Microbiol, 36, 572, 10.1128/aem.36.4.572-576.1978

10.1111/j.1529-8817.1981.tb00818.x

10.1111/j.0022-3646.1984.00212.x

10.1093/plankt/6.2.325

10.1111/j.1529-8817.1986.tb00033.x

10.1111/j.1529-8817.1979.tb02975.x

Paerl H. W., 1983, Partitioning of CO2 fixation in the colonial cyanobacterium Microcystis aeruginosa: mechanism promoting formation of surface scums., Appl. Environ. Microbiol, 46, 252, 10.1128/aem.46.1.252-259.1983

10.4319/lo.1983.28.5.0847

10.4319/lo.1982.27.2.0212

Parsons T. R., 1984, A Manual of Chemical and Biological Methods for Seawater Analysis, 173

Platt T., 1980, Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton., J. Mar. Res, 38, 687

10.1111/j.1529-8817.1976.tb02866.x

Prescott G. W., 1962, Algae of the Western Great Lakes Area, 977, 10.5962/bhl.title.4650

Reynolds C. S., 1984, The Ecology of Freshwater Phytoplankton, 384

10.1007/978-3-642-74890-5

10.1007/978-1-4615-8318-9_2

10.1093/plankt/14.2.235

10.1029/90JC01778

Sokal R. R., 1981, Biometry., 859

Sommer U., 1986, The PEG‐model of seasonal succession of planktonic events in fresh waters., Arch. Hydrobiol, 106, 433, 10.1127/archiv-hydrobiol/106/1986/433

10.1139/f73-234

10.1111/j.0022-3646.1995.00880.x

Taguchi S., 1976, Relationship between photosynthesis and cell size of marine diatoms., J. Phycol, 12, 185, 10.1111/j.1529-8817.1976.tb00499.x

10.1016/0043-1354(91)90083-3

10.1111/j.1469-8137.1957.tb07447.x

Thomann R. V., 1985, The 1983 Algal Bloom in the Potomac Estuary

10.1111/j.0022-3646.1991.00351.x

10.1111/j.1529-8817.1980.tb03011.x

Vollenweider R. A., 1969, A Manual on Methods for Measuring Primary Production in Aquatic Environments, 213

Ward A. K., 1980, Interactions of light and nitrogen source among planktonic blue‐green algae., Arch. Hydrobiol, 90, 1

10.1007/BF00345747

Wetzel R. G., 1983, Seasonal succession of phytoplankton. In Limnology, 368

Whitford L. A., 1973, A Manual of the Freshwater Algae. North Carolina Agricultural Experiment Station, Tech. Bull. 188, 324

Yentsch C. S., 1966, A study of photosynthetic light reactions, and a new interpretation of sun and shade phytoplankton., J. Mar. Res, 24, 319

Yoder J. A., 1979, Effect of temperature on light‐limited growth and chemical composition of Skeletonema costatum (Bacillariophyceae)., J. Phycol, 15, 362