Effect of temperature and time on mechanical and electrical properties of HDPE/glass fiber composites

Fibers and Polymers - Tập 14 - Trang 115-120 - 2013
U. Alkan1, Y. Özcanlı1, V. Alekberov2
1Department of Physics, Faculty of Arts and Sciences, Yildiz Technical University, Davutpasa Campus, Esenler, Istanbul, Turkey
2Institute of Physics of the Azerbaijan Academy of Science, Baku, Azerbaijan

Tóm tắt

In recent years, composites based on glass fiber reinforced polymer have been widely used in order to meet increasing durability and safety regulations, particularly in the power cable, automotive and plane industry. In this paper, mechanical and electrical properties of high density polyethylene (HDPE) and HDPE containing glass fiber polymer composites were investigated and compared at different temperatures. Composite materials were prepared with the hot pressing method. Tensile strength, % elongation and the modulus of elasticity (or Young’s modulus) were determined for each sample at different temperatures. In addition to this, at different temperatures τ σ and τ E have mechanical and electrical lifetime respectively, corresponding to mechanical tension (σ) and electrical strength (E), and this was investigated for each sample. As compared to the mechanical and electrical properties of neat HDPE, HDPE/0.5 % glass fiber composites have been found to have better mechanical and electrical durability.

Tài liệu tham khảo

J. A. Epaarachchi, Compos. Struct., 74, 419 (2006). R. K. Y. Li, J. Z. Liang, and S. C. Tjong, J. Mater. Proc. Technol., 79, 59 (1998). S. K. Khanna, R. M. Winter, P. Ranganathan, S. B. Yedlab, M. Kalukanimuttamb, and K. Paruchuri, Composite Part A, 34, 53 (2003). H. F. Wu, D. W. Dwight, and N. T. Huff, Compos. Sci. Technol., 57, 975 (1997). J. A. Epaarachchi and P. D. Clausen, Compos. Part AAppl. S., 34, 313 (2003). A. Akinci, J. Reinf. Plast. Compos., 29, 957 (2010). A. Pawlak, Polymer, 48, 1397 (2007). C. Yumusak and V. Alekberov, Fiber. Polym., 9, 15 (2008). F.Ş. Boydağ, Y. L. Özcanli, V. A. Alekberov, and I. Hikmet, Compos. Part B, 37, 249 (2006). Y. L. Özcanli, F.Ş. Boydağ, V. A. Alekberov, I. Hikmet, and M. Cantürk, Modern Physics Letters B, 21, 1415 (2007). Sh.V. Mamedov, V. A. Alekperov, Y. Lenger, D. Oren, S. A. Abasov, M. Subası, and R. L. Bayramova, Polym. Compos., 20, 216 (1999). Q. Fu, Y. Men, and G. Strobl, Polymer, 44, 1927 (2003). M. Psarski, E. Piorkowska, and A. Galeski, Macromolecules, 33, 916 (2000). O. Guiot, L. Tighzert, and X. Coqueret, Eur. Polym. J., 35, 565 (1999). D. W. Mayo, F. A. Miller, and R. W. Hannah, “Course Notes on the Interpretation of Infrared and Raman Spectra”, John Wiley & Sons, 2003. P. Pages, F. Carrasco, J. Saurina, and X. Colom, J. Appl. Polym. Sci., 60, 153 (1996). A. A. Tager, “Physical Chemistry of Polymers” (English Translation), Mir Publishers, 1978. S. N. Zhurkov, V. S. Kuksenko, and V. A. Petrov, Theoretical and Applied Fracture Mechanics, Russia, 1984. F. Avasos, M. A. Lopez-Manchada, and M. Arrayo, Polymer, 39, 6173 (1996). A. R. Blythe and D. Bloor, “Electrical Properties of Polymers”, Cambridge University Press, 2005.