Tác động của độ cứng của vật liệu nền đối với sự phân hóa sớm của tế bào gốc phôi người
Tóm tắt
Tính đa năng và khả năng tự làm mới của tế bào gốc phôi người (hESC) khiến chúng trở thành công cụ quý giá trong các lĩnh vực sinh học phát triển, dược lý và y học tái tạo. Do đó, có mối quan tâm lớn trong việc xây dựng các chiến lược để nhân giống và phân hóa hESC. Các phương pháp mô phỏng môi trường tế bào gốc tự nhiên, cả về hóa học và vật lý, đã nhận được sự chú ý lớn trong những năm gần đây. Điều quan trọng không kém là bằng chứng cho thấy các tế bào cũng có thể cảm nhận được các tính chất cơ học của môi trường vi mô của chúng. Trong nghiên cứu này, chúng tôi kiểm tra giả thuyết rằng hESC chấp nhận các tín hiệu cơ học để phân hóa từ vật liệu nền bằng cách nuôi cấy chúng trên polydimethylsiloxane (PDMS) linh hoạt với độ cứng khác nhau.
Các vật liệu nền PDMS được chuẩn bị sử dụng các công thức thương mại hiện có và được đặc trưng hóa về độ cứng, các thuộc tính bề mặt và hiệu quả của việc gắn kết và tăng trưởng tế bào. Qua các độ cứng của nền khác nhau, số lượng tế bào, sự gắn kết tế bào và diện tích bề mặt tế bào đều tương tự nhau. Sự biểu hiện của các dấu hiệu đa năng giảm theo thời gian nuôi cấy lâu hơn trên tất cả các vật liệu nền PDMS với độ cứng khác nhau. Phân tích sự biểu hiện gen của các dấu hiệu phân hóa cho thấy rằng quá trình phân hóa trở nên ít ngẫu nhiên hơn với thời gian nuôi cấy lâu hơn.
Từ khóa
#tế bào gốc phôi người #độ cứng vật liệu nền #phân hóa tế bào #polydimethylsiloxane #sinh học phát triểnTài liệu tham khảo
Wobus AM, Guan K, Yang HT, Boheler KR: Embryonic stem cells as a model to study cardiac, skeletal muscle, and vascular smooth muscle cell differentiation. Methods Mol Biol (Clifton, NJ) 2002, 185: 127-156.
Peerani R, Rao BM, Bauwens C, Yin T, Wood GA, Nagy A, Kumacheva E, Zandstra PW: Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J 2007, 26: 4744-4755. 10.1038/sj.emboj.7601896
Xu R-H, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA: Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Meth 2005, 2: 185-190. 10.1038/nmeth744
Chadwick K, Wang L, Li L, Menendez P, Murdoch B, Rouleau A, Bhatia M: Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 2003, 102: 906-915. 10.1182/blood-2003-03-0832
Gerrard L, Rodgers L, Cui W: Differentiation of Human Embryonic Stem Cells to Neural Lineages in Adherent Culture by Blocking Bone Morphogenetic Protein Signaling. Stem Cells 2005, 23: 1234-1241. 10.1634/stemcells.2005-0110
Dravid G, Ye Z, Hammond H, Chen G, Pyle A, Donovan P, Yu X, Cheng L: Defining the Role of Wnt/?-Catenin Signaling in the Survival, Proliferation, and Self-Renewal of Human Embryonic Stem Cells. Stem Cells 2005, 23: 1489-1501. 10.1634/stemcells.2005-0034
McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS: Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 2004, 6: 483-495. 10.1016/S1534-5807(04)00075-9
Engler AJ, Sen S, Sweeney HL, Discher DE: Matrix elasticity directs stem cell lineage specification. Cell 2006, 126: 677-689. 10.1016/j.cell.2006.06.044
Shimizu N, Yamamoto K, Obi S, Kumagaya S, Masumura T, Shimano Y, Naruse K, Yamashita JK, Igarashi T, Ando J: Cyclic strain induces mouse embryonic stem cell differentiation into vascular smooth muscle cells by activating PDGF receptor β. J Appl Physiol 2008, 104: 766-772. 10.1152/japplphysiol.00870.2007
Kurpinski K, Chu J, Hashi C, Li S: Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci 2006, 103: 16095-16100. 10.1073/pnas.0604182103
Saha S, Ji L, de Pablo JJ, Palecek SP: Inhibition of human embryonic stem cell differentiation by mechanical strain. J Cell Physiol 2006, 206: 126-137. 10.1002/jcp.20441
Stevens MM, George JH: Exploring and Engineering the Cell Surface Interface. Science 2005, 310: 1135-1138. 10.1126/science.1106587
Takito J, Al-Awqati Q: Conversion of ES cells to columnar epithelia by hensin and to squamous epithelia by laminin. J Cell Biol 2004, 166: 1093-1102. 10.1083/jcb.200405159
Abraham S, Eroshenko N, Rao RR: Role of bioinspired polymers in determination of pluripotent stem cell fate. Regenerative Med 2009, 4: 561-578. 10.2217/rme.09.23
Emerman JT, Burwen SJ, Pitelka DR: Substrate properties influencing ultrastructural differentiation of mammary epithelial cells in culture. Tissue Cell 1979, 11: 109-119. 10.1016/0040-8166(79)90011-9
Fan VH, Tamama K, Au A, Littrell R, Richardson LB, Wright JW, Wells A, Griffith LG: Tethered epidermal growth factor provides a survival advantage to mesenchymal stem cells. Stem cells (Dayton, Ohio) 2007, 25: 1241-1251. 10.1634/stemcells.2006-0320
Discher DE, Mooney DJ, Zandstra PW: Growth factors, matrices, and forces combine and control stem cells. Science (New York, NY) 2009, 324: 1673-1677. 10.1126/science.1171643
Winer JP, Janmey PA, McCormick ME, Funaki M: Bone marrow-derived human mesenchymal stem cells become quiescent on soft substrates but remain responsive to chemical or mechanical stimuli. Tissue Eng Part A 2009, 15: 147-154.
Gray DS, Tien J, Chen CS: Repositioning of cells by mechanotaxis on surfaces with micropatterned Young's modulus. J Biomed Mat Res Part A 2003, 66: 605-614.
Li L, Sharma N, Chippada U, Jiang X, Schloss R, Yarmush ML, Langrana NA: Functional modulation of ES-derived hepatocyte lineage cells via substrate compliance alteration. Ann Biomed Eng 2008, 36: 865-876. 10.1007/s10439-008-9458-3
Mata A, Hsu L, Capito R, Aparicio C, Henrikson K, Stupp SI: Micropatterning of bioactive self-assembling gels. In Book Micropatterning of bioactive self-assembling gels. Edited by: . The Royal Society of Chemistry; 1228.
Levental I: Soft biological materials and their impact on cell function. Soft Matter 2007, 3: 299. 10.1039/b610522j
Hengsberger S, Kulik A, Zysset P: Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone 2002, 30: 178-184. 10.1016/S8756-3282(01)00624-X
Tzvetkova Chevolleau T: The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials 2008, 29: 1541. 10.1016/j.biomaterials.2007.12.016
Goffin JM, Pittet P, Csucs G, Lussi JW, Meister J-J, Hinz B: Focal adhesion size controls tension-dependent recruitment of α-smooth muscle actin to stress fibers. J Cell Biol 2006, 172: 259-268. 10.1083/jcb.200506179
Pelham RJ: Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 1997, 94: 13661. 10.1073/pnas.94.25.13661
Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Janmey PA: Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 2005, 60: 24-34. 10.1002/cm.20041
Discher DE, Janmey P, Wang Y-l: Tissue cells feel and respond to the stiffness of their substrate. Science 2005, 310: 1139-1143. 10.1126/science.1116995
Georges PC, Janmey PA: Cell type-specific response to growth on soft materials. J Appl Physiol 2005, 98: 1547-1553. 10.1152/japplphysiol.01121.2004
Zoldan J, Karagiannis ED, Lee CY, Anderson DG, Langer R, Levenberg S: The influence of scaffold elasticity on germ layer specification of human embryonic stem cells. Biomaterials 2011, 32: 9612-9621. 10.1016/j.biomaterials.2011.09.012