Ảnh hưởng của việc thay thế glutamine bằng lysine đối với các đặc tính cấu trúc và sinh học của peptide kháng khuẩn Polybia-MP1

Amino Acids - Tập 55 - Trang 881-890 - 2023
Hai Bui Thi Phuong1, Van Anh Tran1, Khoa Nguyen Ngoc1, Viet Nguyen Huu1, Hang Ngo Thu2, Mao Can Van2, Hue Pham Thi3, Minh Nguyen Hong3, Hiep Tuan Tran1, Huy Luong Xuan1,4
1Faculty of Pharmacy, Phenikaa University, Hanoi, Vietnam
2Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
3Bioresource Research Center, Phenikaa University, Hanoi, Vietnam
4Phenikaa Institute for Advanced Study (PIAS), Phenikaa University, Hanoi, Vietnam

Tóm tắt

Peptide kháng khuẩn tự nhiên Polybia-MP1 là ứng cử viên triển vọng cho việc phát triển các liệu pháp điều trị mới cho nhiễm trùng và ung thư. Nó thể hiện hoạt tính kháng khuẩn và chống ung thư phổ rộng với độ an toàn cao trên các tế bào khỏe mạnh. Tuy nhiên, các sửa đổi trình tự trước đây thường dẫn đến ít nhất một trong hai hậu quả: gia tăng đáng kể hoạt tính ly giải hồng cầu hoặc giảm đáng kể hoạt tính đối với vi khuẩn Gram âm và tế bào ung thư. Trong nghiên cứu này, một phương pháp mới đã được áp dụng bằng cách thay thế axit amin Glutamine ở vị trí 12 bằng Lysine và tạo ra tương tự MP1-Q12K. Dữ liệu sơ bộ của chúng tôi cho thấy sự gia tăng trong hoạt tính kháng khuẩn và nấm, trong khi hoạt tính chống ung thư và hoạt tính ly giải hồng cầu của hai peptide này thì tương đương. Hơn nữa, MP1-Q12K được phát hiện có khả năng tự kết hợp thấp hơn so với Polybia-MP1, điều này càng hỗ trợ cho việc tăng cường các đặc tính kháng khuẩn. Do đó, nghiên cứu này cung cấp thông tin mới về mối quan hệ cấu trúc–hoạt tính của Polybia-MP1 và hỗ trợ cho việc phát triển các peptide kháng khuẩn mạnh mẽ và chọn lọc.

Từ khóa

#Polybia-MP1 #peptide kháng khuẩn #glutamine #lysine #hoạt tính kháng khuẩn #hoạt tính chống ung thư

Tài liệu tham khảo

Afshar A, Yuca E, Wisdom C, Alenezi H, Ahmed J, Tamerler C, Edirisinghe M (2021) Next-generation antimicrobial peptides (AMPs) incorporated nanofibre wound dressings. Med Devices Sens 4(1):e10144. https://doi.org/10.1002/mds3.10144 Alvares DS, Fanani ML, Ruggiero Neto J, Wilke N (2016) The interfacial properties of the peptide polybia-MP1 and its interaction with DPPC are modulated by lateral electrostatic attractions. Biochim Biophys Acta 185(2):393–402. https://doi.org/10.1016/j.bbamem.2015.12.010 Alvares DS, Wilke N, Ruggiero Neto J, Fanani ML (2017) The insertion of polybia-MP1 peptide into phospholipid monolayers is regulated by its anionic nature and phase state. Chem Phys Lipid 207:38–48. https://doi.org/10.1016/j.chemphyslip.2017.08.001 da Silva AMB, Silva-Gonçalves LC, Oliveira FA, Arcisio-Miranda M (2018) Pro-necrotic activity of cationic mastoparan peptides in human glioblastoma multiforme cells via membranolytic action. Mol Neurobiol 55(7):5490–5504. https://doi.org/10.1007/s12035-017-0782-1 de Souza BM, dos Santos Cabrera MP, Neto JR, Palma MS (2011) Investigating the effect of different positioning of lysine residues along the peptide chain of mastoparans for their secondary structures and biological activities. Amino Acids 40(1):77–90. https://doi.org/10.1007/s00726-010-0481-y dos Santos Cabrera MP, Costa STB, de Souza BM, Palma MS, Ruggiero JR, Ruggiero Neto J (2008) Selectivity in the mechanism of action of antimicrobial mastoparan peptide Polybia-MP1. Eur Biophys J 37(6):879. https://doi.org/10.1007/s00249-008-0299-7 dos Santos Cabrera MP, Arcisio-Miranda M, Gorjão R, Leite NB, de Souza BM, Curi R, Procopio J, Ruggiero Neto J, Palma MS (2012) Influence of the bilayer composition on the binding and membrane disrupting effect of polybia-MP1, an antimicrobial mastoparan peptide with leukemic T-lymphocyte cell selectivity. Biochemistry 51(24):4898–4908. https://doi.org/10.1021/bi201608d European Committee for Antimicrobial Susceptibility Testing of the European Society of Clinical M D Infectious (2003) Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect 9(8):ix–xv. https://doi.org/10.1046/j.1469-0691.2003.00790.x Fritz JH, Brunner S, Birnstiel ML, Buschle M, Av G, Mattner F, Zauner W (2004) The artificial antimicrobial peptide KLKLLLLLKLK induces predominantly a TH2-type immune response to co-injected antigens. Vaccine 22(25):3274–3284. https://doi.org/10.1016/j.vaccine.2004.03.007 Gautier R, Douguet D, Antonny B, Drin G (2008) HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics 24(18):2101–2102. https://doi.org/10.1093/bioinformatics/btn392 Hien TT, Ambite I, Butler D, Wan MLY, Tran TH, Höglund U, Babjuk M, Svanborg C (2020) Bladder cancer therapy without toxicity—a dose-escalation study of alpha1-oleate. Int J Cancer 147(9):2479–2492. https://doi.org/10.1002/ijc.33019 Hodges RS, Zhu B-Y, Zhou NE, Mant CT (1994) Reversed-phase liquid chromatography as a useful probe of hydrophobic interactions involved in protein folding and protein stability. J Chromatogr A 676(1):3–15. https://doi.org/10.1016/0021-9673(94)80452-4 Hofer U (2019) The cost of antimicrobial resistance. Nat Rev Microbiol 17(1):3–3. https://doi.org/10.1038/s41579-018-0125-x Hoskin DW, Ramamoorthy A (2008) Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta 177(2):357–375. https://doi.org/10.1016/j.bbamem.2007.11.008 Kazemzadeh-Narbat M, Cheng H, Chabok R, Alvarez MM, de la Fuente-Nunez C, Phillips KS, Khademhosseini A (2021) Strategies for antimicrobial peptide coatings on medical devices: a review and regulatory science perspective. Crit Rev Biotechnol 41(1):94–120. https://doi.org/10.1080/07388551.2020.1828810 Kim Y-W, Grossmann TN, Verdine GL (2011) Synthesis of all-hydrocarbon stapled α-helical peptides by ring-closing olefin metathesis. Nat Protoc 6(6):761–771. https://doi.org/10.1038/nprot.2011.324 Koo HB, Seo J (2019) Antimicrobial peptides under clinical investigation. Pept Sci 111(5):e24122. https://doi.org/10.1002/pep2.24122 Lazzaro BP, Zasloff M, Rolff J (2020) Antimicrobial peptides: application informed by evolution. Science 368(6490):5480. https://doi.org/10.1126/science.aau5480 Lee DL, Mant CT, Hodges RS (2003) A novel method to measure self-association of small amphipathic molecules: temperature profiling in reversed-phase chromatography *. J Biol Chem 278(25):22918–22927. https://doi.org/10.1074/jbc.M301777200 Leite NB, da Costa LC, dos Santos AD, dos Santos Cabrera MP, de Souza BM, Palma MS, Ruggiero Neto J (2011) The effect of acidic residues and amphipathicity on the lytic activities of mastoparan peptides studied by fluorescence and CD spectroscopy. Amino Acids 40(1):91–100. https://doi.org/10.1007/s00726-010-0511-9 Leite NB, dos Santos AD, de Souza BM, Palma MS, Ruggiero Neto J (2014) Effect of the aspartic acid D2 on the affinity of Polybia-MP1 to anionic lipid vesicles. Eur Biophys J 43(4):121–130. https://doi.org/10.1007/s00249-014-0945-1 Leite Natália B, Aufderhorst-Roberts A, Palma Mario S, Connell Simon D, Neto João R, Beales Paul A (2015) PE and PS lipids synergistically enhance membrane poration by a peptide with anticancer properties. Biophys J 109(5):936–947. https://doi.org/10.1016/j.bpj.2015.07.033 Liu B, Zhang W, Gou S, Huang H, Yao J, Yang Z, Liu H, Zhong C, Liu B, Ni J, Wang R (2017) Intramolecular cyclization of the antimicrobial peptide Polybia-MPI with triazole stapling: influence on stability and bioactivity. J Pept Sci 23(11):824–832. https://doi.org/10.1002/psc.3031 Luong HX, Kim D-H, Lee B-J, Kim Y-W (2016) Antimicrobial and hemolytic activity of stapled heptapeptide dimers. Bull Korean Chem Soc 37(8):1199–1203. https://doi.org/10.1002/bkcs.10839 Luong HX, Kim D-H, Lee B-J, Kim Y-W (2017) Antimicrobial activity and stability of stapled helices of polybia-MP1. Arch Pharmacal Res 40(12):1414–1419. https://doi.org/10.1007/s12272-017-0963-5 Luong HX, Thanh TT, Tran TH (2020) Antimicrobial peptides—advances in development of therapeutic applications. Life Sci 260:118407. https://doi.org/10.1016/j.lfs.2020.118407 Luong HX, Ngan HD, Thi Phuong HB, Quoc TN, Tung TT (2022) Multiple roles of ribosomal antimicrobial peptides in tackling global antimicrobial resistance. Royal Soc Open Sci 9(1):211583. https://doi.org/10.1098/rsos.211583 Mant CT, Jiang Z, Gera L, Davis T, Nelson KL, Bevers S, Hodges RS (2019) De novo designed amphipathic α-helical antimicrobial peptides incorporating Dab and Dap residues on the polar face to treat the gram-negative pathogen, acinetobacter baumannii. J Med Chem 62(7):3354–3366. https://doi.org/10.1021/acs.jmedchem.8b01785 Martins IBS, Viegas TG, dos Santos AD, de Souza BM, Palma MS, Ruggiero Neto J, de Araujo AS (2021) The effect of acidic pH on the adsorption and lytic activity of the peptides Polybia-MP1 and its histidine-containing analog in anionic lipid membrane: a biophysical study by molecular dynamics and spectroscopy. Amino Acids 53(5):753–767. https://doi.org/10.1007/s00726-021-02982-0 Nguyen MH, Ojima Y, Kawata T, Taya M (2013) Alternation in colonization behaviors of Escherichia coli cells with rpoS or yggE deficiency on solid surfaces. Biotechnol Bioeng 110(4):1050–1056. https://doi.org/10.1002/bit.24770 W.H. Organization (2015) Global action plan on antimicrobial resistance. https://www.who.int/publications/i/item/9789241509763 Riool M, de Breij A, Drijfhout JW, Nibbering PH, Zaat SAJ (2017) Antimicrobial peptides in biomedical device manufacturing. Front Chem. https://doi.org/10.3389/fchem.2017.00063 Rodrigues G, Maximiano MR, Franco OL (2021) Antimicrobial peptides used as growth promoters in livestock production. Appl Microbiol Biotechnol 105(19):7115–7121. https://doi.org/10.1007/s00253-021-11540-3 Shah P, Shrivastava S, Gogoi P, Saxena S, Srivastava S, Singh RJ, Godara B, Kumar N, Gaur GK (2022) Wasp venom peptide (Polybia MP-1) shows antimicrobial activity against multi drug resistant bacteria isolated from mastitic cow milk. Int J Pept Res Ther 28(1):44. https://doi.org/10.1007/s10989-021-10355-0 Souza BM, Mendes MA, Santos LD, Marques MR, César LMM, Almeida RNA, Pagnocca FC, Konno K, Palma MS (2005) Structural and functional characterization of two novel peptide toxins isolated from the venom of the social wasp Polybia paulista. Peptides 26(11):2157–2164. https://doi.org/10.1016/j.peptides.2005.04.026 Tacconelli E, Sifakis F, Harbarth S, Schrijver R, van Mourik M, Voss A, Sharland M, Rajendran NB, Rodríguez-Baño J, Bielicki J, de Kraker M, Gandra S, Gastmeier P, Gilchrist K, Gikas A, Gladstone BP, Goossens H, Jafri H, Kahlmeter G, Leus F, Luxemburger C, Malhotra-Kumar S, Marasca G, McCarthy M, Navarro MD, Nuñez-Nuñez M, Oualim A, Price J, Robert J, Sommer H, von Cube M, Vuong C, Wiegand I, Witschi AT, Wolkewitz M (2018) Surveillance for control of antimicrobial resistance. Lancet Infect Dis 18(3):e99–e106. https://doi.org/10.1016/S1473-3099(17)30485-1 Tan P, Fu H, Ma X (2021) Design, optimization, and nanotechnology of antimicrobial peptides: from exploration to applications. Nano Today 39:101229. https://doi.org/10.1016/j.nantod.2021.101229 Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML (2020) Antimicrobial peptides as anticancer agents: functional properties and biological activities. Molecules. https://doi.org/10.3390/molecules25122850 Valdez-Miramontes CE, De Haro-Acosta J, Aréchiga-Flores CF, Verdiguel-Fernández L, Rivas-Santiago B (2021) Antimicrobial peptides in domestic animals and their applications in veterinary medicine. Peptides 142:170576. https://doi.org/10.1016/j.peptides.2021.170576 Wang K-r, Zhang B-z, Zhang W, Yan J-x, Li J, Wang R (2008) Antitumor effects, cell selectivity and structure–activity relationship of a novel antimicrobial peptide polybia-MPI. Peptides 29(6):963–968. https://doi.org/10.1016/j.peptides.2008.01.015 Xuan HL, Duc TD, Thuy AM, Chau PM, Tung TT (2021) Chemical approaches in the development of natural nontoxic peptide Polybia-MP1 as a potential dual antimicrobial and antitumor agent. Amino Acids 53(6):843–852. https://doi.org/10.1007/s00726-021-02995-9