Effect of strain on degradation behaviors of WE43, Fe and Zn wires

Acta Biomaterialia - Tập 113 - Trang 627-645 - 2020
Kai Chen1,2, Yun Lu1,2, Hongyan Tang1,2, Yuanming Gao1,2, Feng Zhao1,2, Xuenan Gu1,2, Yubo Fan1,2,3
1Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
2Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100083, China
3National Research Center for Rehabilitation Technical Aids, Beijing 100176, China

Tài liệu tham khảo

Zheng, 2014, Biodegradable metals, Mater. Sci. Eng.: R, 77, 1, 10.1016/j.mser.2014.01.001 Mostaed, 2018, Zinc-based alloys for degradable vascular stent applications, Acta Biomater., 71, 1, 10.1016/j.actbio.2018.03.005 Bowen, 2016, Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-alloys, Adv. Healthc. Mater., 5, 1121, 10.1002/adhm.201501019 Francis, 2015, Iron and iron-based alloys for temporary cardiovascular applications, J. Mater. Sci. Mater. Med., 26, 138, 10.1007/s10856-015-5473-8 Hernández-Escobar, 2019, Current status and perspectives of zinc-based absorbable alloys for biomedical applications, Acta Biomater., 97, 1, 10.1016/j.actbio.2019.07.034 Liu, 2019, Fundamental Theory of biodegradable metals—definition, criteria, and design, Adv. Funct. Mater., 29 Chen, 2019, In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy, Biomaterials, 221, 10.1016/j.biomaterials.2019.119414 Murni, 2015, Cytotoxicity evaluation of biodegradable Zn–3Mg alloy toward normal human osteoblast cells, Mater. Sci. Eng.: C, 49, 560, 10.1016/j.msec.2015.01.056 Obayi, 2015, Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants, Acta Biomater., 17, 68, 10.1016/j.actbio.2015.01.024 Gonzalez, 2018, Magnesium degradation under physiological conditions - best practice, Bioact. Mater., 3, 174, 10.1016/j.bioactmat.2018.01.003 Su, 2019, Zinc-based biomaterials for regeneration and therapy, Trends Biotechnol., 37, 428, 10.1016/j.tibtech.2018.10.009 Wegener, 2011, Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials, Mater. Sci. Eng.: B, 176, 1789, 10.1016/j.mseb.2011.04.017 Qi, 2019, Electrophoretic deposition of bioadaptive drug delivery coatings on magnesium alloy for bone repair, ACS Appl. Mater. Interfaces, 11, 8625, 10.1021/acsami.9b01227 Chen, 2016, Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline, Corros. Sci., 111, 541, 10.1016/j.corsci.2016.05.039 Windhagen, 2013, Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study, Biomed. Eng. Online, 12, 62, 10.1186/1475-925X-12-62 Haude, 2016, Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial, Eur. Heart J., 37, 2701, 10.1093/eurheartj/ehw196 Haude, 2016, Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial, Lancet North Am. Ed., 387, 31, 10.1016/S0140-6736(15)00447-X Jafari, 2015, A review of stress-corrosion cracking and corrosion fatigue of magnesium alloys for biodegradable implant applications, JOM, 67, 1143, 10.1007/s11837-015-1366-z Choudhary, 2012, Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment, Acta Biomater., 8, 916, 10.1016/j.actbio.2011.10.031 Harandi, 2017, Corrosion fatigue of a magnesium alloy under appropriate human physiological conditions for bio-implant applications, Eng. Fract. Mech., 186, 134, 10.1016/j.engfracmech.2017.09.031 Choudhary, 2014, In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications, Mater. Sci. Eng.: C, 42, 629, 10.1016/j.msec.2014.06.018 Hashim, 2019, Behavior of 316L stainless steel containing corrosion pits under cyclic loading, Mater. Corros., 70, 2009, 10.1002/maco.201810744 Rieck, 1986, Stress corrosion cracking and hydrogen embrittlement of cold worked AISI type 304 austenitic stainless steel in mode I and mode III, Mater. Sci. Technol., 2, 1066, 10.1179/mst.1986.2.10.1066 Wang, 2018, Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds, Proc. Natl. Acad. Sci., 115, 2640, 10.1073/pnas.1716420115 Jafari, 2018, Stress corrosion cracking of an extruded magnesium alloy (ZK21) in a simulated body fluid, Eng. Fract. Mech., 201, 47, 10.1016/j.engfracmech.2018.09.002 Grogan, 2011, A corrosion model for bioabsorbable metallic stents, Acta Biomater., 7, 3523, 10.1016/j.actbio.2011.05.032 Galvin, 2017, A strain-mediated corrosion model for bioabsorbable metallic stents, Acta Biomater., 55, 505, 10.1016/j.actbio.2017.04.020 Zheng, 2015, Effects of tensile and compressive deformation on corrosion behaviour of a Mg–Zn alloy, Corros. Sci., 90, 445, 10.1016/j.corsci.2014.10.043 Koo, 2017, A study of long-term static load on degradation and mechanical integrity of Mg alloys-based biodegradable metals, Mater. Sci. Eng. B, 219, 45, 10.1016/j.mseb.2017.02.009 Gao, 2019, Effect of stress on corrosion of high-purity magnesium in vitro and in vivo, Acta Biomater., 83, 477, 10.1016/j.actbio.2018.11.019 Yang, 2018, A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying, J. Mech. Behav. Biomed. Mater., 82, 51, 10.1016/j.jmbbm.2018.03.018 Gu, 2018, The effect of tensile and fluid shear stress on the in vitro degradation of magnesium alloy for stent applications, Bioact. Mater., 3, 448, 10.1016/j.bioactmat.2018.08.002 Torne, 2017, Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments, Acta Biomater., 48, 541, 10.1016/j.actbio.2016.10.030 Wang, 2016, Flow-induced corrosion of absorbable magnesium alloy: in-situ and real-time electrochemical study, Corros. Sci., 104, 277, 10.1016/j.corsci.2015.12.020 2013 2010, ASTM-G102-89: standard practice for calculation for corrosion rates and related information from electrochemical measurements 2004 Morejón-Alonso, 2019, Electrochemical deposition of Sr and Sr/Mg-co-substituted hydroxyapatite on Ti-40Nb alloy, Mater. Lett., 248 Mani, 2007, Coronary stents: a materials perspective, Biomaterials, 28, 1689, 10.1016/j.biomaterials.2006.11.042 Seitz, 2015, Recent advances in biodegradable metals for medical sutures: a critical review, Adv. Healthc. Mater., 4, 1915, 10.1002/adhm.201500189 Liu, 2018, Initial formation of corrosion products on pure zinc in simulated body fluid, J. Mater. Sci. Technol., 34, 2271, 10.1016/j.jmst.2018.05.005 Shao, 2005, EIS analysis on the anodic dissolution kinetics of pure iron in a highly alkaline solution, Electrochem. Commun., 7, 1429, 10.1016/j.elecom.2005.10.002 Li, 2008, Corrosion of the stressed pipe steel in carbonate–bicarbonate solution studied by scanning localized electrochemical impedance spectroscopy, Electrochim. Acta, 53, 2831, 10.1016/j.electacta.2007.10.077 Liu, 2019, Influences of albumin on in vitro corrosion of pure Zn in artificial plasma, Corros. Sci., 153, 341, 10.1016/j.corsci.2019.04.003 Huang, 2016, Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations, J. Power Sources, 309, 82, 10.1016/j.jpowsour.2016.01.073 Zai, 2020, Comparison of corrosion resistance and biocompatibility of magnesium phosphate (MgP), zinc phosphate (ZnP) and calcium phosphate (CaP) conversion coatings on Mg alloy, Surf. Coat. Technol., 10.1016/j.surfcoat.2020.125919 Ascencio, 2014, An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: the influence of immersion time, Corros. Sci., 87, 489, 10.1016/j.corsci.2014.07.015 Ascencio, 2015, An investigation of the corrosion mechanisms of WE43Mg alloy in a modified simulated body fluid solution: the effect of electrolyte renewal, Corros. Sci., 91, 297, 10.1016/j.corsci.2014.11.034 Schaffer, 2012, Cold-drawn bioabsorbable ferrous and ferrous composite wires: an evaluation of mechanical strength and fatigue durability, Metall. Mater. Trans. B, 43, 984, 10.1007/s11663-012-9661-3 Maier, 2016, Mechanical and corrosive properties of two magnesium wires: Mg4Gd and Mg6Ag, 393 Esmaily, 2017, Fundamentals and advances in magnesium alloy corrosion, Prog. Mater Sci., 89, 92, 10.1016/j.pmatsci.2017.04.011 Yang, 2017, Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model, Biomaterials, 145, 92, 10.1016/j.biomaterials.2017.08.022 Cheng, 2013, Comparative in vitro study on pure metals (Fe, Mn, Mg, Zn and W) as biodegradable metals, J. Mater. Sci. Technol., 29, 619, 10.1016/j.jmst.2013.03.019 Ikeo, 2016, Fabrication of a magnesium alloy with excellent ductility for biodegradable clips, Acta Biomater., 29, 468, 10.1016/j.actbio.2015.10.023 Diez, 2015, Hydroxyapatite (HA)/poly-l-lactic acid (PLLA) dual coating on magnesium alloy under deformation for biomedical applications, J. Mater. Sci. Mater. Med., 27, 34, 10.1007/s10856-015-5643-8 Gutman, 1989 Cui, 2016, Effect of plastic deformation on the electrochemical and stress corrosion cracking behavior of X70 steel in near-neutral pH environment, Mater. Sci. Eng.: A, 677, 259, 10.1016/j.msea.2016.09.033 Xu, 2012, Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution, Corros. Sci., 64, 145, 10.1016/j.corsci.2012.07.012 Guillory2nd, 2019, In vitro corrosion and in vivo response to zinc implants with electropolished and anodized surfaces, ACS Appl. Mater. Interfaces, 11, 19884, 10.1021/acsami.9b05370 Lin, 2020, Effects of pre-strain on the surface residual stress and corrosion behavior of an Al-Zn-Mg-Cu alloy plate, Mater. Charact., 160, 10.1016/j.matchar.2020.110129 Drelich, 2016, Importance of oxide film in endovascular biodegradable zinc stents, Surface Innov.s, 4, 133, 10.1680/jsuin.16.00014 Gunde, 2010, The influence of heat treatment and plastic deformation on the bio-degradation of a Mg-Y-RE alloy, J. Biomed. Mater. Res. Part A, 92A, 409 Němcová, 2014, Influence of plasma electrolytic oxidation on fatigue performance of AZ61 magnesium alloy, Corros. Sci., 82, 58, 10.1016/j.corsci.2013.12.019 Gu, 2018, vitro and in vivo studies on as-extruded Mg- 5.25wt.%Zn-0.6wt.%Ca alloy as biodegradable metal, Sci. China Mater., 61, 619, 10.1007/s40843-017-9205-x Dong, 2014, Study on antibacterial mechanism of Mg(OH)2 nanoparticles, Mater. Lett., 134, 286, 10.1016/j.matlet.2014.07.110 Chen, 2017, Recovery zinc and manganese from spent battery powder by hydrometallurgical route, Energy Procedia, 107, 167, 10.1016/j.egypro.2016.12.162 Xu, 2003, Quantitative determination of metallic iron content in steel-making slag, J. Miner. Mater. Char. Eng., 2, 65 Zhu, 2011, Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31, Appl. Surf. Sci., 257, 6129, 10.1016/j.apsusc.2011.02.017 Sahal, 2006, The effects of dislocation patterns on the dissolution process of polycrystalline nickel, Acta Mater., 54, 2157, 10.1016/j.actamat.2006.01.006 Jafari, 2017, In-vitro biodegradation and corrosion-assisted cracking of a coated magnesium alloy in modified-simulated body fluid, Mater. Sci. Eng.: C, 78, 278, 10.1016/j.msec.2017.04.079 Dietzel, 2010, Testing and mesoscale modelling of hydrogen assisted cracking of magnesium, Eng. Fract. Mech., 77, 257, 10.1016/j.engfracmech.2009.07.009 Winzer, 2005, A critical review of the stress corrosion cracking (SCC) of magnesium alloys, Adv. Eng. Mater., 7, 659, 10.1002/adem.200500071 Galvin, 2017, Plastic strains during stent deployment have a critical influence on the rate of corrosion in absorbable magnesium stents, Med. Biol. Eng. Comput., 55, 1261, 10.1007/s11517-016-1584-8 Zhang, 2019, Corrosion behavior and mechanical degradation of as-extruded Mg-Gd-Zn-Zr alloys for orthopedic application, J. Biomed. Mater. Res. B, 1 Wu, 2017, Effect of pre-strain on the fatigue behavior of extruded AZ31 alloys, IOP Conf. Series, 230 Cho, 2013, Biocompatibility and strength retention of biodegradable Mg‐Ca‐Zn alloy bone implants, J. Biomed. Mater. Res. B, 101, 201, 10.1002/jbm.b.32813 Lansdown, 1997, Silver aids healing in the sterile skin wound: experimental studies in the laboratory rat, Br. J. Dermatol., 137, 728, 10.1111/j.1365-2133.1997.tb01109.x Li, 2019, Corrosion fatigue behavior of additively manufactured biodegradable porous iron, Corros. Sci., 156, 106, 10.1016/j.corsci.2019.05.003 Wu, 2016, Research of a novel biodegradable surgical staple made of high purity magnesium, Bioact. Mater., 1, 122, 10.1016/j.bioactmat.2016.09.005 Seelig, 1924, A study of magnesium wire as an absorbable suture and ligature material, Arch. Surg., 8, 669, 10.1001/archsurg.1924.01120050210011 Seitz, 2011, The manufacture of resorbable suture material from magnesium – drawing and stranding of thin wires, Adv. Eng. Mater., 13, 1087, 10.1002/adem.201100152 Seitz, 2010, The manufacture of resorbable suture material from magnesium, Adv. Eng. Mater., 12, 1099, 10.1002/adem.201000191 Qu, 2017, In vivo and in vitro assessment of the biocompatibility and degradation of high-purity Mg anastomotic staples, J. Biomater. Appl., 31, 1203, 10.1177/0885328217692948 Cao, 2013, Animal experimental study of biodegradable magnesium alloy stapler for gastrointestinal anastomosis, Zhonghua Wei Chang Wai Ke Za Zhi, 16, 772 Venezuela, 2019, The prospects for biodegradable zinc in wound closure applications, Adv. Healthc. Mater., 8, 10.1002/adhm.201900408 Permut, 2010, Sternal wire removal in pediatric patients: wire versus cable sternotomy closure, J. Thorac. Cardiovasc. Surg., 139, 1663, 10.1016/j.jtcvs.2009.07.003 Li, 2019, Challenges in the use of zinc and its alloys as biodegradable metals: perspective from biomechanical compatibility, Acta Biomater., 97, 23, 10.1016/j.actbio.2019.07.038 Garcia-Garcia, 2018, In vivo serial invasive imaging of the second-generation drug-eluting absorbable metal scaffold (Magmaris — DREAMS 2G) in de novo coronary lesions: insights from the BIOSOLVE-II First-In-Man Trial, Int. J. Cardiol., 255, 22, 10.1016/j.ijcard.2017.12.053 Joner, 2018, Preclinical evaluation of degradation kinetics and elemental mapping of first- and second-generation bioresorbable magnesium scaffolds, EuroIntervention, e1040, 10.4244/EIJ-D-17-00708 Maeng, 2009, Negative vascular remodelling after implantation of bioabsorbable magnesium alloy stents in porcine coronary arteries: a randomised comparison with bare-metal and sirolimus-eluting stents, Heart, 95, 241, 10.1136/hrt.2007.139261 Lin, 2017, Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold, Acta Biomater., 54, 454, 10.1016/j.actbio.2017.03.020 Zhou, 2019, Long-term in vivo study of biodegradable Zn-Cu stent: a 2-year implantation evaluation in porcine coronary artery, Acta Biomater., 97, 657, 10.1016/j.actbio.2019.08.012