Effect of strain on degradation behaviors of WE43, Fe and Zn wires
Tài liệu tham khảo
Zheng, 2014, Biodegradable metals, Mater. Sci. Eng.: R, 77, 1, 10.1016/j.mser.2014.01.001
Mostaed, 2018, Zinc-based alloys for degradable vascular stent applications, Acta Biomater., 71, 1, 10.1016/j.actbio.2018.03.005
Bowen, 2016, Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-alloys, Adv. Healthc. Mater., 5, 1121, 10.1002/adhm.201501019
Francis, 2015, Iron and iron-based alloys for temporary cardiovascular applications, J. Mater. Sci. Mater. Med., 26, 138, 10.1007/s10856-015-5473-8
Hernández-Escobar, 2019, Current status and perspectives of zinc-based absorbable alloys for biomedical applications, Acta Biomater., 97, 1, 10.1016/j.actbio.2019.07.034
Liu, 2019, Fundamental Theory of biodegradable metals—definition, criteria, and design, Adv. Funct. Mater., 29
Chen, 2019, In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy, Biomaterials, 221, 10.1016/j.biomaterials.2019.119414
Murni, 2015, Cytotoxicity evaluation of biodegradable Zn–3Mg alloy toward normal human osteoblast cells, Mater. Sci. Eng.: C, 49, 560, 10.1016/j.msec.2015.01.056
Obayi, 2015, Influence of cross-rolling on the micro-texture and biodegradation of pure iron as biodegradable material for medical implants, Acta Biomater., 17, 68, 10.1016/j.actbio.2015.01.024
Gonzalez, 2018, Magnesium degradation under physiological conditions - best practice, Bioact. Mater., 3, 174, 10.1016/j.bioactmat.2018.01.003
Su, 2019, Zinc-based biomaterials for regeneration and therapy, Trends Biotechnol., 37, 428, 10.1016/j.tibtech.2018.10.009
Wegener, 2011, Microstructure, cytotoxicity and corrosion of powder-metallurgical iron alloys for biodegradable bone replacement materials, Mater. Sci. Eng.: B, 176, 1789, 10.1016/j.mseb.2011.04.017
Qi, 2019, Electrophoretic deposition of bioadaptive drug delivery coatings on magnesium alloy for bone repair, ACS Appl. Mater. Interfaces, 11, 8625, 10.1021/acsami.9b01227
Chen, 2016, Comparative corrosion behavior of Zn with Fe and Mg in the course of immersion degradation in phosphate buffered saline, Corros. Sci., 111, 541, 10.1016/j.corsci.2016.05.039
Windhagen, 2013, Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study, Biomed. Eng. Online, 12, 62, 10.1186/1475-925X-12-62
Haude, 2016, Sustained safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de novo coronary lesions: 12-month clinical results and angiographic findings of the BIOSOLVE-II first-in-man trial, Eur. Heart J., 37, 2701, 10.1093/eurheartj/ehw196
Haude, 2016, Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coronary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial, Lancet North Am. Ed., 387, 31, 10.1016/S0140-6736(15)00447-X
Jafari, 2015, A review of stress-corrosion cracking and corrosion fatigue of magnesium alloys for biodegradable implant applications, JOM, 67, 1143, 10.1007/s11837-015-1366-z
Choudhary, 2012, Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment, Acta Biomater., 8, 916, 10.1016/j.actbio.2011.10.031
Harandi, 2017, Corrosion fatigue of a magnesium alloy under appropriate human physiological conditions for bio-implant applications, Eng. Fract. Mech., 186, 134, 10.1016/j.engfracmech.2017.09.031
Choudhary, 2014, In-vitro characterization of stress corrosion cracking of aluminium-free magnesium alloys for temporary bio-implant applications, Mater. Sci. Eng.: C, 42, 629, 10.1016/j.msec.2014.06.018
Hashim, 2019, Behavior of 316L stainless steel containing corrosion pits under cyclic loading, Mater. Corros., 70, 2009, 10.1002/maco.201810744
Rieck, 1986, Stress corrosion cracking and hydrogen embrittlement of cold worked AISI type 304 austenitic stainless steel in mode I and mode III, Mater. Sci. Technol., 2, 1066, 10.1179/mst.1986.2.10.1066
Wang, 2018, Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds, Proc. Natl. Acad. Sci., 115, 2640, 10.1073/pnas.1716420115
Jafari, 2018, Stress corrosion cracking of an extruded magnesium alloy (ZK21) in a simulated body fluid, Eng. Fract. Mech., 201, 47, 10.1016/j.engfracmech.2018.09.002
Grogan, 2011, A corrosion model for bioabsorbable metallic stents, Acta Biomater., 7, 3523, 10.1016/j.actbio.2011.05.032
Galvin, 2017, A strain-mediated corrosion model for bioabsorbable metallic stents, Acta Biomater., 55, 505, 10.1016/j.actbio.2017.04.020
Zheng, 2015, Effects of tensile and compressive deformation on corrosion behaviour of a Mg–Zn alloy, Corros. Sci., 90, 445, 10.1016/j.corsci.2014.10.043
Koo, 2017, A study of long-term static load on degradation and mechanical integrity of Mg alloys-based biodegradable metals, Mater. Sci. Eng. B, 219, 45, 10.1016/j.mseb.2017.02.009
Gao, 2019, Effect of stress on corrosion of high-purity magnesium in vitro and in vivo, Acta Biomater., 83, 477, 10.1016/j.actbio.2018.11.019
Yang, 2018, A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying, J. Mech. Behav. Biomed. Mater., 82, 51, 10.1016/j.jmbbm.2018.03.018
Gu, 2018, The effect of tensile and fluid shear stress on the in vitro degradation of magnesium alloy for stent applications, Bioact. Mater., 3, 448, 10.1016/j.bioactmat.2018.08.002
Torne, 2017, Influence of strain on the corrosion of magnesium alloys and zinc in physiological environments, Acta Biomater., 48, 541, 10.1016/j.actbio.2016.10.030
Wang, 2016, Flow-induced corrosion of absorbable magnesium alloy: in-situ and real-time electrochemical study, Corros. Sci., 104, 277, 10.1016/j.corsci.2015.12.020
2013
2010, ASTM-G102-89: standard practice for calculation for corrosion rates and related information from electrochemical measurements
2004
Morejón-Alonso, 2019, Electrochemical deposition of Sr and Sr/Mg-co-substituted hydroxyapatite on Ti-40Nb alloy, Mater. Lett., 248
Mani, 2007, Coronary stents: a materials perspective, Biomaterials, 28, 1689, 10.1016/j.biomaterials.2006.11.042
Seitz, 2015, Recent advances in biodegradable metals for medical sutures: a critical review, Adv. Healthc. Mater., 4, 1915, 10.1002/adhm.201500189
Liu, 2018, Initial formation of corrosion products on pure zinc in simulated body fluid, J. Mater. Sci. Technol., 34, 2271, 10.1016/j.jmst.2018.05.005
Shao, 2005, EIS analysis on the anodic dissolution kinetics of pure iron in a highly alkaline solution, Electrochem. Commun., 7, 1429, 10.1016/j.elecom.2005.10.002
Li, 2008, Corrosion of the stressed pipe steel in carbonate–bicarbonate solution studied by scanning localized electrochemical impedance spectroscopy, Electrochim. Acta, 53, 2831, 10.1016/j.electacta.2007.10.077
Liu, 2019, Influences of albumin on in vitro corrosion of pure Zn in artificial plasma, Corros. Sci., 153, 341, 10.1016/j.corsci.2019.04.003
Huang, 2016, Graphical analysis of electrochemical impedance spectroscopy data in Bode and Nyquist representations, J. Power Sources, 309, 82, 10.1016/j.jpowsour.2016.01.073
Zai, 2020, Comparison of corrosion resistance and biocompatibility of magnesium phosphate (MgP), zinc phosphate (ZnP) and calcium phosphate (CaP) conversion coatings on Mg alloy, Surf. Coat. Technol., 10.1016/j.surfcoat.2020.125919
Ascencio, 2014, An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: the influence of immersion time, Corros. Sci., 87, 489, 10.1016/j.corsci.2014.07.015
Ascencio, 2015, An investigation of the corrosion mechanisms of WE43Mg alloy in a modified simulated body fluid solution: the effect of electrolyte renewal, Corros. Sci., 91, 297, 10.1016/j.corsci.2014.11.034
Schaffer, 2012, Cold-drawn bioabsorbable ferrous and ferrous composite wires: an evaluation of mechanical strength and fatigue durability, Metall. Mater. Trans. B, 43, 984, 10.1007/s11663-012-9661-3
Maier, 2016, Mechanical and corrosive properties of two magnesium wires: Mg4Gd and Mg6Ag, 393
Esmaily, 2017, Fundamentals and advances in magnesium alloy corrosion, Prog. Mater Sci., 89, 92, 10.1016/j.pmatsci.2017.04.011
Yang, 2017, Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model, Biomaterials, 145, 92, 10.1016/j.biomaterials.2017.08.022
Cheng, 2013, Comparative in vitro study on pure metals (Fe, Mn, Mg, Zn and W) as biodegradable metals, J. Mater. Sci. Technol., 29, 619, 10.1016/j.jmst.2013.03.019
Ikeo, 2016, Fabrication of a magnesium alloy with excellent ductility for biodegradable clips, Acta Biomater., 29, 468, 10.1016/j.actbio.2015.10.023
Diez, 2015, Hydroxyapatite (HA)/poly-l-lactic acid (PLLA) dual coating on magnesium alloy under deformation for biomedical applications, J. Mater. Sci. Mater. Med., 27, 34, 10.1007/s10856-015-5643-8
Gutman, 1989
Cui, 2016, Effect of plastic deformation on the electrochemical and stress corrosion cracking behavior of X70 steel in near-neutral pH environment, Mater. Sci. Eng.: A, 677, 259, 10.1016/j.msea.2016.09.033
Xu, 2012, Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution, Corros. Sci., 64, 145, 10.1016/j.corsci.2012.07.012
Guillory2nd, 2019, In vitro corrosion and in vivo response to zinc implants with electropolished and anodized surfaces, ACS Appl. Mater. Interfaces, 11, 19884, 10.1021/acsami.9b05370
Lin, 2020, Effects of pre-strain on the surface residual stress and corrosion behavior of an Al-Zn-Mg-Cu alloy plate, Mater. Charact., 160, 10.1016/j.matchar.2020.110129
Drelich, 2016, Importance of oxide film in endovascular biodegradable zinc stents, Surface Innov.s, 4, 133, 10.1680/jsuin.16.00014
Gunde, 2010, The influence of heat treatment and plastic deformation on the bio-degradation of a Mg-Y-RE alloy, J. Biomed. Mater. Res. Part A, 92A, 409
Němcová, 2014, Influence of plasma electrolytic oxidation on fatigue performance of AZ61 magnesium alloy, Corros. Sci., 82, 58, 10.1016/j.corsci.2013.12.019
Gu, 2018, vitro and in vivo studies on as-extruded Mg- 5.25wt.%Zn-0.6wt.%Ca alloy as biodegradable metal, Sci. China Mater., 61, 619, 10.1007/s40843-017-9205-x
Dong, 2014, Study on antibacterial mechanism of Mg(OH)2 nanoparticles, Mater. Lett., 134, 286, 10.1016/j.matlet.2014.07.110
Chen, 2017, Recovery zinc and manganese from spent battery powder by hydrometallurgical route, Energy Procedia, 107, 167, 10.1016/j.egypro.2016.12.162
Xu, 2003, Quantitative determination of metallic iron content in steel-making slag, J. Miner. Mater. Char. Eng., 2, 65
Zhu, 2011, Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31, Appl. Surf. Sci., 257, 6129, 10.1016/j.apsusc.2011.02.017
Sahal, 2006, The effects of dislocation patterns on the dissolution process of polycrystalline nickel, Acta Mater., 54, 2157, 10.1016/j.actamat.2006.01.006
Jafari, 2017, In-vitro biodegradation and corrosion-assisted cracking of a coated magnesium alloy in modified-simulated body fluid, Mater. Sci. Eng.: C, 78, 278, 10.1016/j.msec.2017.04.079
Dietzel, 2010, Testing and mesoscale modelling of hydrogen assisted cracking of magnesium, Eng. Fract. Mech., 77, 257, 10.1016/j.engfracmech.2009.07.009
Winzer, 2005, A critical review of the stress corrosion cracking (SCC) of magnesium alloys, Adv. Eng. Mater., 7, 659, 10.1002/adem.200500071
Galvin, 2017, Plastic strains during stent deployment have a critical influence on the rate of corrosion in absorbable magnesium stents, Med. Biol. Eng. Comput., 55, 1261, 10.1007/s11517-016-1584-8
Zhang, 2019, Corrosion behavior and mechanical degradation of as-extruded Mg-Gd-Zn-Zr alloys for orthopedic application, J. Biomed. Mater. Res. B, 1
Wu, 2017, Effect of pre-strain on the fatigue behavior of extruded AZ31 alloys, IOP Conf. Series, 230
Cho, 2013, Biocompatibility and strength retention of biodegradable Mg‐Ca‐Zn alloy bone implants, J. Biomed. Mater. Res. B, 101, 201, 10.1002/jbm.b.32813
Lansdown, 1997, Silver aids healing in the sterile skin wound: experimental studies in the laboratory rat, Br. J. Dermatol., 137, 728, 10.1111/j.1365-2133.1997.tb01109.x
Li, 2019, Corrosion fatigue behavior of additively manufactured biodegradable porous iron, Corros. Sci., 156, 106, 10.1016/j.corsci.2019.05.003
Wu, 2016, Research of a novel biodegradable surgical staple made of high purity magnesium, Bioact. Mater., 1, 122, 10.1016/j.bioactmat.2016.09.005
Seelig, 1924, A study of magnesium wire as an absorbable suture and ligature material, Arch. Surg., 8, 669, 10.1001/archsurg.1924.01120050210011
Seitz, 2011, The manufacture of resorbable suture material from magnesium – drawing and stranding of thin wires, Adv. Eng. Mater., 13, 1087, 10.1002/adem.201100152
Seitz, 2010, The manufacture of resorbable suture material from magnesium, Adv. Eng. Mater., 12, 1099, 10.1002/adem.201000191
Qu, 2017, In vivo and in vitro assessment of the biocompatibility and degradation of high-purity Mg anastomotic staples, J. Biomater. Appl., 31, 1203, 10.1177/0885328217692948
Cao, 2013, Animal experimental study of biodegradable magnesium alloy stapler for gastrointestinal anastomosis, Zhonghua Wei Chang Wai Ke Za Zhi, 16, 772
Venezuela, 2019, The prospects for biodegradable zinc in wound closure applications, Adv. Healthc. Mater., 8, 10.1002/adhm.201900408
Permut, 2010, Sternal wire removal in pediatric patients: wire versus cable sternotomy closure, J. Thorac. Cardiovasc. Surg., 139, 1663, 10.1016/j.jtcvs.2009.07.003
Li, 2019, Challenges in the use of zinc and its alloys as biodegradable metals: perspective from biomechanical compatibility, Acta Biomater., 97, 23, 10.1016/j.actbio.2019.07.038
Garcia-Garcia, 2018, In vivo serial invasive imaging of the second-generation drug-eluting absorbable metal scaffold (Magmaris — DREAMS 2G) in de novo coronary lesions: insights from the BIOSOLVE-II First-In-Man Trial, Int. J. Cardiol., 255, 22, 10.1016/j.ijcard.2017.12.053
Joner, 2018, Preclinical evaluation of degradation kinetics and elemental mapping of first- and second-generation bioresorbable magnesium scaffolds, EuroIntervention, e1040, 10.4244/EIJ-D-17-00708
Maeng, 2009, Negative vascular remodelling after implantation of bioabsorbable magnesium alloy stents in porcine coronary arteries: a randomised comparison with bare-metal and sirolimus-eluting stents, Heart, 95, 241, 10.1136/hrt.2007.139261
Lin, 2017, Long-term in vivo corrosion behavior, biocompatibility and bioresorption mechanism of a bioresorbable nitrided iron scaffold, Acta Biomater., 54, 454, 10.1016/j.actbio.2017.03.020
Zhou, 2019, Long-term in vivo study of biodegradable Zn-Cu stent: a 2-year implantation evaluation in porcine coronary artery, Acta Biomater., 97, 657, 10.1016/j.actbio.2019.08.012