Effect of stacking sequence and high content silver slag addition on electromagnetic interference shielding of abaca/silk fiber reinforced epoxy sandwich composite

T. Ravi1, U. Saravanakumar2
1Department of Electrical and Electronics Engineering, SCAD College of Engineering and Technology, Cheranmahadevi, India
2Department of Electronics and Communication Engineering, Muthayammal Engineering College, Rasipuram, India

Tóm tắt

In this research study, a non-deformable, stiff electromagnetic interference (EMI) shielding material was prepared and characterized. The composites were prepared using industrial waste silver slag fine particles; woven abaca fiber and silk fabric with two different stacking order designated as ASSA and SAAS. The composites were created utilizing a hand layup technique and the American society for testing of materials (ASTM) standards were used to assess their performance. The findings showed that the abaca/silk/silk/abaca sequence of fibers had greater dielectric values. The ASSA2 composite designation was observed to have a maximum dielectric constant of 4.81. Similar to this, the ASSA2 configuration produced a total EMI shielding effectiveness of 56.85 dB at 20 GHz. Moreover, the ASSA2 composite configuration resulted in enhanced mechanical and hardness qualities. These mechanically hardened epoxy-based composites with increased EMI shielding could be employed in applications for radar, radomes, and the telecommunications industry.

Tài liệu tham khảo

Vincent A et al (2018) Colloid Interface Sci Commun 24:89–92. https://doi.org/10.1016/j.colcom.2018.04.007 Parameswarreddy G et al (2023) Polymer Composites 44(3):1522–1533. https://doi.org/10.1002/pc.27185 Nagaraju V et al (2022) Silicon:1–8. https://doi.org/10.1007/s12633-022-01825-1 Lozitsky OV et al (2020) Appl Nanosci 10(8):2759–2767. https://doi.org/10.1007/s13204-020-01402-1 Babu M, Anusha N, Bapu BRT et al (2023) Biomass Conv Bioref 13:409–416. https://doi.org/10.1007/s13399-022-03489-8 Subbayamma G, Reddy DVRK (2023). Biomass Conv Bioref. https://doi.org/10.1007/s13399-023-03943-1 Devi G et al (2022) Polym Compos 43(9):5996–6003. https://doi.org/10.1002/pc.26898 Tolvanen J et al (2019) Composites Science and Technology 181:107704. https://doi.org/10.1016/j.compscitech.2019.107704 Zhang Y et al (2019) Compos Sci Technol 183:107833. https://doi.org/10.1016/j.compscitech.2019.107833 Wang Z et al (2021) Ceram Int 47(4):5747–5757. https://doi.org/10.1016/j.ceramint.2020.10.161 Xiao Y-y et al (2022) Compos B Eng 239:109962. https://doi.org/10.1016/j.compositesb.2022.109962 Merizgui T et al (2021) Polym Compos 42(5):2484–2491. https://doi.org/10.1002/pc.25993 Bailey R, Kraft H (2022) Int Polym Proc 2(2):94–101. https://doi.org/10.1515/ipp-1987-0028 Oliveira FM, Gusmao R (2020) ACS Appl Electron Mater 2(10):3048–3071. https://doi.org/10.1021/acsaelm.0c00545 Sinha et al (2021) J Mater Sci 56:4569–4587. https://doi.org/10.1007/s10853-020-05572-9 Sinha AK et al (2020) Mater Sci Forum 978. Trans Tech Publications Ltd,. https://doi.org/10.4028/www.scientific.net/MSF.978.291 Simbaña EA et al (2020) Abaca: cultivation, obtaining fibre and potential uses. Handbook of natural fibres. Woodhead Publishing, p 197–218 Thiagamani SMK et al (2019) Int J Boil Macromol 140:637–646. https://doi.org/10.1016/j.ijbiomac.2019.08.166 Nelson LJ, Smith RA (2019) Compos A Appl Sci Manuf 118:1–8. https://doi.org/10.1016/j.compositesa.2018.12.009 Cheour K et al (2020) Fibers Polym 21:162–169. https://doi.org/10.1007/s12221-020-9494-7 Hernandez et al (2021) Composite Structures 261:113289. https://doi.org/10.1016/j.compstruct.2020.113289 Alshahrani H, Arun Prakash VR (2023) Ind Crops Prod 191:115967. https://doi.org/10.1016/j.indcrop.2022.115967 Alshahrani H, ArunPrakash VR (2022) Int J Biol Macromol 223:851–859. https://doi.org/10.1016/j.ijbiomac.2022.10.272 Babu M et al (2023) Biomass Conversion and Biorefinery 13(1):375–382. https://doi.org/10.1007/s13399-022-02617-8 AmuthaJeevakumari SA et al (2021) Plast Rubber Compos 50(5):241–248. https://doi.org/10.1080/14658011.2021.1890514 Jeyanthi S et al (2022) J Electron Mater 51(7):3453–3465. https://doi.org/10.1007/s11664-022-09656-x Sivakumar K et al (2023) Biomass Convers Biorefin 13(6):5435–5443. https://doi.org/10.1007/s13399-022-03469-y Subramanian J et al (2021) J Electron Mater 50:1282–1291. https://doi.org/10.1007/s11664-020-08622-9 Madhusudhan CK et al (2022) J Mater Sci Mater Electron: 1–17. https://doi.org/10.1007/s10854-021-07466-1 Chen W et al (2022) J Reinf Plast Compos 41(13–14):497–508. https://doi.org/10.1177/07316844211065183 Bertolini MC et al (2020) Front Mater 7:174. https://www.frontiersin.org/articles/10.3389/fmats.2020.00174/full Verma P et al (2015) Mater Des 88:269–277. https://doi.org/10.1016/j.matdes.2015.08.156 Jia X et al (2021) Chem Eng J 405:126927. https://doi.org/10.1016/j.cej.2020.126927 Shakir HMF et al (2019) J Mater Sci Mater Electron 30(18):17382–17392. https://doi.org/10.1007/s10854-019-02088-0 Xu P et al (2022) Adv Compos Hybrid Mater 5(2):991–1002. https://doi.org/10.1007/s42114-021-00406-x