Effect of seeded substrates on hydrothermally grown ZnO nanorods
Tóm tắt
We report a study on the effect of seeding on glass substrates with zinc oxide nanocrystallites towards the hydrothermal growth of ZnO nanorods from a zinc nitrate hexahydrate and hexamethylenetetramine solution at 95 °C. The seeding was done with pre-synthesized ZnO nanoparticles in isopropanol with diameters of about 6–7 nm as well as the direct growth of ZnO nanocrystallites on the substrates by the hydrolysis of pre-deposited zinc acetate film. The nanorods grown on ZnO nanoparticle seeds show uniform dimensions throughout the substrate but were not homogenously aligned vertically from the substrate and appeared like nanoflowers with nanorod petals. Nanorods grown from the crystallites formed in situ on the substrates displayed wide variations in dimension depending upon the preheating and annealing conditions. Annealing the seed crystals below 350 °C led to scattered growth directions whereupon preferential orientation of the nanorods perpendicular to the substrates was observed. High surface to volume ratio which is vital for gas sensing applications can be achieved by this simple hydrothermal growth of nanorods and the rod height and rod morphology can be controlled through the growth parameters.
Tài liệu tham khảo
Zhang J, Sun L, Pan H, Liao C, Yan C (2002) N J Chem 26:33. doi:10.1039/b108172a
Hornyak GL, Dutta J, Tibbals HF, Rao AK (2008) Introduction to nanoscience. Taylor & Francis, NY
Xu J, Chen Y, Li Y, Shen J (2005) J Mater Sci 40:2919. doi:10.1007/s10853-005-2435-4
Hossain MK, Ghosh SC, Boontongkong Y, Thanachayanont C, Dutta J, Metastable Nanocryst J (2005) Mater 23:27
Law M, Greene LE, Johnson JC, Saykally R, Yang P (2005) Nature. Mater Lett 4:455
Wang X, Song J, Liu J, Wang ZL (2007) Science 316:102. doi:10.1126/science.1139366
Zhang Y, Yu K, Ouyang S, Zhu Z (2006) Mater Lett 60:522. doi:10.1016/j.matlet.2005.09.028
Vayssieres L, Keis K, Lindquist SE, Hagfeldt A (2001) J Phys Chem B 105:3350. doi:10.1021/jp010026s
Greene LE, Law M, Goldberger J, Kim F, Johnson JC, Zhang Y, Saykally RJ, Yang P (2003) Angew Chem Int Ed 42:3031. doi:10.1002/anie.200351461
Sugunan A, Warad HC, Boman M, Dutta J (2006) J Sol-Gel Sci Technol 39:49. doi:10.1007/s10971-006-6969-y
Shi G, Mo CM, Cai WL, Zhang LD (2005) Solid State Commun 115:253. doi:10.1016/S0038-1098(00)00169-1
Baruah S, Thanachayanont C, Dutta J (2008) Sci Technol Adv Mater 9:025009. doi:10.1088/1468-6996/9/2/025009
Cross RBM, De Souza MM, Narayanan EMS (2005) Nanotechnology 16:2188. doi:10.1088/0957-4484/16/10/035
Bahnemann DW, Kormann C, Hofmann R (1987) J Phys Chem 91:3789. doi:10.1021/j100298a015
Chaudret B (2005) C R Phys 6:117. doi:10.1016/j.crhy.2004.11.008
Jafri SHM, Sharma AB, Thanachayanont C, Dutta J (2006) Mater Res Soc Symp Proc vol 901E
Claesson EM, Philipse AP (2007) Colloids Surf A Physicochem Eng Asp 297:46. doi:10.1016/j.colsurfa.2006.10.019
Baruah S, Rafique RF, Dutta J (2008) Nano 3:1
Dutta J, Hofmann H (2004) Self Organization of Colloidal Nanoparticles, Encyclopedia of Nanoscience & Nanotechnology 9:617 ed. H. S. Nalwa, American Scientific Publishers, USA
Wang M, Zhang L (2009) Mater Lett 63:301. doi:10.1016/j.matlet.2008.10.022
Santos AMP, Santos EJP (2008) Thin Solid Films 516:6210. doi:10.1016/j.tsf.2007.11.111
Wei M, Zhi D, MacManus-Driscoll JL (2005) Nanotechnology 16:1364. doi:10.1088/0957-4484/16/8/064
Paraguay FD, Estrada WL, Acosta DRN, Andrade E, Miki-Yoshida M (1999) M. Thin Solid Films 350:192. doi:10.1016/S0040-6090(99)00050-4
Hochepied JF, de Oliveira APA, Guyot-Ferreol V, Tranchant JF (2005) J Cryst Growth 283:156. doi:10.1016/j.jcrysgro.2005.05.051
Lima RC, Macario LR, Espinosa JWM, Longo VM, Erlo R, Marana NL, Sambrano JR, dos Santos ML, Moura AP, Pizani PS, Andrés J, Longo E, Varela JA (2008) J Phys Chem A 112:8970. doi:10.1021/jp8022474
Baruah S, Dutta J (2009) Sci Technol Adv Mater 10:013001. doi:10.1088/1468-6996/10/1/013001