Effect of retained austenite on wear resistance of nanostructured dual phase steels

Materials Science and Technology - Tập 32 Số 1 - Trang 40-48 - 2016
Feng Hu1, Kaiming Wu1, Peter Hodgson2,1
1The State Key Laboratory of Refractories and Metallurgy, Hubei Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081, China
2Institute for Frontier Materials, Deakin University, Geelong, VIC 3226, Australia

Tóm tắt

Nanostructured super bainitic and quenching–partitioning (Q&P) martensitic steels with a significant amount of retained austenite obtained by low temperature bainitic transformation and Q&P respectively were studied to explore the effect of retained austenite on stirring wear resistance. The results suggest that the Q&P martensitic steel significantly enhanced the hardness of the worn surface (from 674 to 762 HV1) and increased the thickness of the deformed layer (∼3.3 μm), compared to the nanostructured bainitic steel. The underlying reason is that the Q&P martensitic steel has a higher stability of retained austenite thereby providing a superior transformation induced plasticity effect to increase surface hardness and reduce wear rate during the wear process.

Từ khóa


Tài liệu tham khảo

Bhadeshia H. K. D. H. ‘Bainite in steels’, 2nd edn, Vol. 1, 19–63; 2001, London, Maney.

10.1098/rspa.2009.0407

10.1016/j.cossms.2004.09.005

10.2355/isijinternational.43.1238

10.4028/www.scientific.net/MSF.500-501.495

10.1016/j.wear.2011.03.025

10.1016/j.wear.2012.11.064

Kankanala A. ‘Unlubricated rolling/sliding wear behaviour of high silicon carbide-free steels’, ‘Master's thesis’, 21–32; 2010, Sweden, Luleå University of Technology.

10.1016/j.wear.2012.02.008

10.1016/j.wear.2010.12.025

10.1016/S1359-6454(03)00059-4

10.1016/j.cossms.2004.09.003

10.1179/026708309X12512744154162

10.1016/j.msea.2006.02.133

Streicher A. M., Speer J. G., Matlock D. K., and De Cooman B. C. ‘In quenching and partitioning response of a Si-added TRIP sheet steel’, (ed. Speer J. G.), ‘Proc. Int. Conf. on Advanced high strength sheet steels for automotive applications’, 51–62; 2004, Warrendale, PA, USA, AIST.

10.4028/www.scientific.net/MSF.561-565.2283

10.1016/j.msea.2008.11.014

10.1016/j.msea.2011.08.050

10.1016/j.msea.2011.07.008

Wang C. Y., 2009, Chin. J. Mater. Res, 23, 305

10.1016/j.matdes.2013.10.094

10.2355/isijinternational.43.1821

Lindström A. ‘Austempered high silicon steel – investigation of wear resistance in a carbide free microstructure’, ‘Master's thesis’, 17–22; 2006, Sweden, Luleå University of Technology.

10.1016/j.wear.2013.04.011

J-MatPro 4.0. http://www.cntech.com.cn/product/JMatPro.html.

M. Peet, H.K.D.H. Bhadeshia: Materials algorithms project. www.msm.cam.ac.uk/map/steel/tar/mucg83.exe.

10.1016/j.scriptamat.2011.05.004

10.1016/j.actamat.2009.12.020

10.1016/j.actamat.2011.05.024

10.1016/j.msea.2012.10.015

Wang C. Y. ‘Investigation on 30 GPa grade ultrahigh-strength martensitic–austenitic steels’, ‘PhD thesis’, 39–54; 2010, Beijing, China, Central Iron & Steel Research Institute.

10.1179/1743284713Y.0000000227

10.1007/s11661-006-0213-9

10.1016/S0261-3069(03)00168-7

10.1016/j.wear.2004.09.064

10.1016/j.wear.2013.09.008

Bakshi S. D., 2014, Wear, 316, 72

10.2355/isijinternational.54.222