Effect of preprocessing and simulation parameters on the performance of molecular docking studies

Pedro Henrique Callil-Soares1, Lílian Caroline Kramer Biasi1, Pedro de Alcântara Pessôa Filho1
1Chemical Engineering Department, Polytechnic School of the University of São Paulo, Av. Lineu Prestes, 580, São Paulo, 05508-000, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Stanzione F, Giangreco I, Cole JC (2021) Use of molecular docking computational tools in drug discovery. Prog Med Chem 60:273–343

Tao X, Huang Y, Wang C et al (2020) Recent developments in molecular docking technology applied in food science: a review. Int J Food Sci Technol 55(1):33–45

Trisciuzzi D, Alberga D, Leonetti F et al (2018) Molecular docking for predictive toxicology. In: Nicolotti O (eds) Computational Toxicology. Methods in Molecular Biology, vol 1800. Humana Press, New York, NY. Springer, p 181–197

Campbell AJ, Lamb ML, Joseph-McCarthy D (2014) Ensemble-based docking using biased molecular dynamics. J Chem Inf Model 54(7):2127–2138

Santos KB, Guedes IA, Karl AL et al (2020) Highly flexible ligand docking: benchmarking of the DockThor program on the LEADS-PEP protein–peptide data set. J Chem Inf Model 60(2):667–683

Madhavi Sastry G, Adzhigirey M, Day T et al (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27(3):221–234

Zhang D, Li H, Wang H et al (2016) Docking accuracy enhanced by QM-derived protein charges. Mol Phys 114(20):3015–3025

Cho AE, Guallar V, Berne BJ et al (2005) Importance of accurate charges in molecular docking: quantum mechanical/molecular mechanical (QM/MM) approach. J Comput Chem 26(9):915–931

Wang Z, Sun H, Yao X et al (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 18(18):12,964-12,975

Trott O, Olson AJ (2010) Autodock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

Santos-Martins D, Solis-Vasquez L, Tillack AF et al (2021) Accelerating autodock4 with GPUs and gradient-based local search. J Chem Theory Comput 17(2):1060–1073

Koes DR, Baumgartner MP, Camacho CJ (2013) Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J Chem Inf Model 53(8):1893–1904

Andersson CD, Thysell E, Lindström A et al (2007) A multivariate approach to investigate docking parameters’ effects on docking performance. J Chem Inf Model 47(4):1673–1687

Su M, Yang Q, Du Y et al (2018) Comparative assessment of scoring functions: the CASF-2016 update. J Chem Inf Model 59(2):895–913

Guedes IA, Barreto A, Marinho D et al (2021) New machine learning and physics-based scoring functions for drug discovery. Sci Rep 11(1):1–19

Rappe AK, Goddard WA III (1991) Charge equilibration for molecular dynamics simulations. J Phys Chem 95(8):3358–3363

Chen J, Martínez TJ (2007) Qtpie: Charge transfer with polarization current equalization. a fluctuating charge model with correct asymptotics. Chem Phys Lett 438(4–6):315–320

Bultinck P, Langenaeker W, Lahorte P et al (2002) The electronegativity equalization method i: parametrization and validation for atomic charge calculations. J Phys Chem A 106(34):7887–7894

Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 17(5–6):490–519

Gasteiger J, Marsili M (1978) A new model for calculating atomic charges in molecules. Tetrahedron Lett 19(34):3181–3184

O’Boyle NM, Banck M, James CA et al (2011) Open babel: an open chemical toolbox. J Cheminform 3(1):1–14

Perilla JR, Schulten K (2017) Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations. Nat Commun 8(1):1–10

Sanches K, Dias RVR, da Silva PH et al (2019) Grb2 dimer interacts with Coumarin through SH2 domains: a combined experimental and molecular modeling study. Heliyon 5(11):e02,869

Formoso E, Matxain JM, Lopez X et al (2010) Molecular dynamics simulation of bovine pancreatic ribonuclease A- CpA and transition state-like complexes. J Phys Chem B 114(21):7371–7382

Best RB, Zhu X, Shim J et al (2012) Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone ϕ, ψ and side-chain χ1 and χ2 dihedral angles. J Chem Theory Comput 8(9):3257–3273

Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

Zhan F, Ding S, Xie W et al (2020) Towards understanding the inter-action of β-lactoglobulin with capsaicin: multi-spectroscopic, thermodynamic, molecular docking and molecular dynamics simulation approaches. Food Hydrocolloids 105(105):767

Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713

Hornak V, Abel R, Okur A et al (2006) Comparison of multiple amber force fields and development of improved protein back bone parameters. Proteins: Struct, Function, Bioinform 65(3):712–725

Vettoretti G, Moroni E, Sattin S et al (2016) Molecular dynamics simulations reveal the mechanisms of allosteric activation of Hsp90 by designed ligands. Sci Rep 6(1):1–13

Oostenbrink C, Villa A, Mark AE et al (2004) A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 25(13):1656–1676

Berendsen HJ, Postma JP, van Gunsteren WF et al (1981) Interaction models for water in relation to protein hydration. In: Pullman B (eds) Intermolecular Forces. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 14. Springer, Dordrecht, pp 331–342

Vanommeslaeghe K, Hatcher E, Acharya C et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690

Yu W, He X, Vanommeslaeghe K et al (2012) Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J Comput Chem 33(31):2451–2468

Zoete V, Cuendet MA, Grosdidier A et al (2011) Swiss-Param: A fast force field generation tool for small organic molecules. J Comput Chem 32(11):2359–2368. https://doi.org/10.1002/jcc.21816

Case D, Aktulga H, Belfon K et al (2022) Amber 2022. University of California, San Francisco

Sousa da Silva AW, Vranken WF (2012) Acpype-antechamber python parser interface. BMC Res Notes 5(1):1–8

Wang J, Wang W, Kollman PA et al (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260

Schüttelkopf AW, van Aalten DMF (2004) PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr D60:1355–1363

Berendsen HJ, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91(1–3):43–56

Berendsen HJ, Jv P, Van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684–3690

Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182–7190

The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC

Virtanen P, Gommers R, Oliphant TE et al (2020) SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat Methods 17:261–272. https://doi.org/10.1038/s41592-019-0686-2

Torres PH, Sodero AC, Jofily P et al (2019) Key topics in molecular docking for drug design. Int J Mol Sci 20(18):4574

Feinstein WP, Brylinski M (2015) Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. J Cheminformatics 7(1):1–10

Hassan NM, Alhossary AA, Mu Y et al (2017) Protein-ligand blind docking using Quickvina-W with inter-process spatio-temporal integration. Sci Rep 7(1):1–13

Liu Y, Grimm M, Wt D et al (2020) CB-Dock: a web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacol Sin 41(1):138–144

Brylinski M, Feinstein WP (2013) eFindSite: improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands. J Comput Aided Mol Des 27(6):551–567

Jo S, Kim T, Iyer VG et al (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865

Singh S, Baker QB, Singh DB (2022) Molecular docking and molecular dynamics simulation. In: Singh DB, Pathak RK (eds) Bioinformatics. Elsevier, pp 291–304

Liu K, Watanabe E, Kokubo H (2017) Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J Comput Aided Mol Des 31(2):201–211

Murray CW, Baxter CA, Frenkel AD (1999) The sensitivity of the results of molecular docking to induced fit effects: application to thrombin, thermolysin and neuraminidase. J Comput Aided Mol Des 13:547–562

Morris GM, Huey R, Lindstrom W et al (2009) AutoDock4 and AutoDock-Tools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

de Oliveira OV, Rocha GB, Paluch AS et al (2021) Repurposing approved drugs as inhibitors of SARS-CoV-2 S-protein from molecular modeling and virtual screening. J Biomol Struct Dyn 39(11):3924–3933

Truchon JF, Bayly CI (2007) Evaluating virtual screening methods: good and bad metrics for the “early recognition” problem. J Chem Inf Model 47(2):488–508