Effect of pore structure of SBA-15 on immobilization of hemoglobin

Springer Science and Business Media LLC - Tập 15 - Trang 653-659 - 2007
Li-Hui Zhou1, Ying-Hua Tao1, Jun Hu1, Xia Han1, Hong-Lai Liu1, Ying Hu1
1State Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai, P.R. China

Tóm tắt

Immobilization of hemoglobin (Hb) in SBA-15 with various pore sizes by physical adsorption was studied. The structure changes of mesoporous SBA-15 before and after the immobilization of Hb were characterized by N2 adsorption isotherms, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Ultraviolet-visible spectroscopy (UV). The results indicate that SBA-15 is a good support for the immobilization of Hb due to its regular structure, large pore diameter, and high surface area. After immobilization of Hb, the regular structure of SBA-15 is still kept, but the pore diameter, pore volume and surface area decrease. With the increase of pore size, the binding amount and leaching amount of Hb increase. There is a maximum binding amount of Hb up to 355.2 mg/g SBA-15 when pore size is 8.9 nm. It is suggested that the immobilization of Hb depends significantly on the pore size of SBA-15.

Tài liệu tham khảo

I.V. Kozhevnikov, A. Sinnema, R.J.J. Jansen, K. Pamio, H. Van Bekkum, Catal. Lett. 30, 241 (1995) Z. Luan, J.Y. Bae, L. Kevan, Chem. Mater. 12, 3202 (2000) C.X. Qi, T. Akita, M. Okumura, K. Kuraoka, M. Haruta, Appl. Catal. A: General 253, 75 (2003) S. Zheng, L. Gao, Mater. Chem. Phys. 78, 512 (2002) C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359, 710 (1992) H. Takahashi, B. Li, T. Sasaki, C. Miyazaki, T. Kajino, S. Inagaki, Micro. Meso. Mater. 44–45, 755 (2001) J. Deere, E. Magner, J.G. Wall, B.K. Hodnett, Chem.Commun. 1, 465 (2001) A. Vinu, M. Miyahara, K. Ariga, J. Phys. Chem. B 109, 6436 (2005) J.F. Diaz, J.K. Balkus Jr, J. Mol. Catal. B: Enzym. 2, 115 (1996) S. Hudson, E. Magner, J. Cooney, B.K. Hodnett, J. Phys. Chem. B 109, 19496 (2005) W. Fujiwara, F. Yamamoto, K. Okamoto, K. Shiolawa, R. Nomura, Anal. Chem. 77, 8138 (2005) Y.F. Zhu, W.H. Shen, X.P. Dong, J.L. Shi, J. Mater. Res. 10, 2682 (2005) B.L. Newalkar, S. Komarneni, Chem. Mater. 13, 4573 (2001) P. Schmidt-Winkel, W.W. Lukens, D.Y. Zhao, P.D. Yang, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc. 121, 254 (1999) L.H. Zhou, Y.Z. Xian, Y.Y. Zhou, J. Hu, H.L. Liu, Acta. Chim. Sinica 63, 2117 (2005) (in Chinese) D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka, G.D. Stucky, J.␣Am. Chem. Soc. 120, 6024 (1998) C.V. Kumar, A. Chaudhari, J. Am.Chem. Soc. 122, 830 (2000) R. Zhu, H.R. Chen, J.L. Shi, D.S. Yan, J. Inor. Mater. 18, 855 (2003) (in Chinese) K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem. 57, 603 (1985) D.Y. Zhao, Q.S. Huo, J.L. Feng, B.F. Chmelka, G.D. Stucky, J.␣Am. Chem. Soc. 120, 6024 (1998) H. Ma, J. He, D.G. Evans, X. Duan, J. Mol. Catal. B: Enzym. 30, 209 (2004) S.G. Peng, Q.M. Gao, Q.G. Wang, J.L. Shi, Chem. Mater. 16, 2675 (2004)