Effect of particle size and viscosity on thermal conductivity enhancement of graphene oxide nanofluid
Tóm tắt
Từ khóa
Tài liệu tham khảo
Devalapally, 2007, Role of nanotechnology in pharmaceutical product development, J. Pharm. Sci., 96, 2547, 10.1002/jps.20875
Esfahani, 2015, Effects of a dual nanofiller, nano-TiO2 and MWCNT, for polysulfone-based nanocomposite membranes for water purification, Desalination, 372, 47, 10.1016/j.desal.2015.06.014
Esfahani, 2015, Comparing humic acid and protein fouling on polysulfone ultrafiltration membranes: adsorption and reversibility, J. Water Process Eng., 6, 83, 10.1016/j.jwpe.2015.03.001
Shahrezaei, 2012, Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles, Powder Technol., 221, 203, 10.1016/j.powtec.2012.01.003
Presting, 2003, Future nanotechnology developments for automotive applications, Mater. Sci. Eng. C, 23, 737, 10.1016/j.msec.2003.09.120
Yang, 2009, Power generation with laterally packaged piezoelectric fine wires, Nat. Nanotechnol., 4, 34, 10.1038/nnano.2008.314
Zubir, 2015, Experimental investigation on the use of reduced graphene oxide and its hybrid complexes in improving closed conduit turbulent forced convective heat transfer, Exp. Thermal Fluid Sci., 66, 290, 10.1016/j.expthermflusci.2015.03.022
Mehrali, 2014, Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids, J. Mater. Sci., 49, 7156, 10.1007/s10853-014-8424-8
Yu, 2008, Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat Transfer Eng., 29, 432, 10.1080/01457630701850851
Hong, 2005, Study of the enhanced thermal conductivity of Fe nanofluids, J. Appl. Phys., 97, 064311, 10.1063/1.1861145
Li, 2007, The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids, J. Appl. Phys., 101, 44312, 10.1063/1.2436472
Chopkar, 2008, Effect of particle size on thermal conductivity of nanofluid, Metall. Mater. Trans. A, 39, 1535, 10.1007/s11661-007-9444-7
Moghadassi, 2010, Effect of CuO nanoparticles in enhancing the thermal conductivities of monoethylene glycol and paraffin fluids, Ind. Eng. Chem. Res., 49, 1900, 10.1021/ie901060e
Beck, 2009, The effect of particle size on the thermal conductivity of alumina nanofluids, J. Nanopart. Res., 11, 1129, 10.1007/s11051-008-9500-2
Every, 1992, The effect of particle size on the thermal conductivity of ZnS/diamond composites, Acta Metall. Mater., 40, 123, 10.1016/0956-7151(92)90205-S
Ding, 2010, Relationship between the thermal conductivity and shear viscosity of nanofluids, Phys. Scr., 2010, 014078, 10.1088/0031-8949/2010/T139/014078
Kwak, 2005, Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol, Korea-Australia Rheol. J., 17, 35
Namburu, 2007, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Exp. Thermal Fluid Sci., 32, 397, 10.1016/j.expthermflusci.2007.05.001
Baby, 2011, Enhanced convective heat transfer using graphene dispersed nanofluids, Nanoscale Res. Lett., 6, 1, 10.1186/1556-276X-6-289
Ghozatloo, 2014, Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger, Exp. Thermal Fluid Sci., 53, 136, 10.1016/j.expthermflusci.2013.11.018
Yu, 2011, Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets, Phys. Lett. A, 375, 1323, 10.1016/j.physleta.2011.01.040
Mahbubul, 2012, Latest developments on the viscosity of nanofluids, Int. J. Heat Mass Transf., 55, 874, 10.1016/j.ijheatmasstransfer.2011.10.021
Hummers, 1958, Preparation of graphitic oxide, J. Am. Chem. Soc., 80, 1339-1339, 10.1021/ja01539a017
Wang, 2008, Facile synthesis and characterization of graphene nanosheets, J. Phys. Chem. C, 112, 8192, 10.1021/jp710931h
Hontoria-Lucas, 1995, Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization, Carbon, 33, 1585, 10.1016/0008-6223(95)00120-3
He, 1998, A new structural model for graphite oxide, Chem. Phys. Lett., 287, 53, 10.1016/S0009-2614(98)00144-4
Esfahani, 2015, Abiotic reversible self-assembly of fulvic and humic acid aggregates in low electrolytic conductivity solutions by dynamic light scattering and zeta potential investigation, Sci. Total Environ., 537, 81, 10.1016/j.scitotenv.2015.08.001
Malvern Instruments Ltd, 2005
Shahriary, 2014, Graphene oxide synthesized by using modified hummers approach, Int. J. Renew. Energy Environ. Eng., 2, 58
Hajjar, 2014, Enhanced thermal conductivities of graphene oxide nanofluids, Int. Commun. Heat Mass Transfer, 57, 128, 10.1016/j.icheatmasstransfer.2014.07.018
Stankovich, 2007, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon, 45, 1558, 10.1016/j.carbon.2007.02.034
Xu, 2013, One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts, ACS Appl. Mater. Interfaces, 5, 654, 10.1021/am302076x
Jana, 2007, Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives, Thermochim. Acta, 462, 45, 10.1016/j.tca.2007.06.009
Deng, 2013, Organic solvent-free cloud point extraction-like methodology using aggregation of graphene oxide, Anal. Chem., 86, 758, 10.1021/ac403345s
Gupta, 2011, Thermal conductivity enhancement of nanofluids containing graphene nanosheets, J. Appl. Phys., 110, 084302, 10.1063/1.3650456
Tang, 2015, Molecular dynamics study of the aggregation process of graphene oxide in water, J. Phys. Chem. C, 119, 26712, 10.1021/acs.jpcc.5b07345
Duch, 2011, Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung, Nano Lett., 11, 5201, 10.1021/nl202515a
Chowdhury, 2013, Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment, Environ. Sci. Technol., 47, 6288, 10.1021/es400483k
Verwey, 1999
Lee, 2013, Study on flow boiling critical heat flux enhancement of graphene oxide/water nanofluid, Int. J. Heat Mass Transf., 65, 348, 10.1016/j.ijheatmasstransfer.2013.06.013
1985
Li, 2008, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol., 3, 101, 10.1038/nnano.2007.451
Rashin, 2013, Viscosity studies on novel copper oxide–coconut oil nanofluid, Exp. Thermal Fluid Sci., 48, 67, 10.1016/j.expthermflusci.2013.02.009
Rashin, 2013, Synthesis and viscosity studies of novel ecofriendly ZnO–coconut oil nanofluid, Exp. Thermal Fluid Sci., 51, 312, 10.1016/j.expthermflusci.2013.08.014
Xie, 2007, Measurements of the viscosity of suspensions containing nanosized Al2O3 particles, High Temp. High Pressures, 37, 127
Mehrali, 2014, Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets, Nanoscale Res. Lett., 9, 1, 10.1186/1556-276X-9-15
Mehrali, 2015, Heat transfer and entropy generation for laminar forced convection flow of graphene nanoplatelets nanofluids in a horizontal tube, International Communications in Heat and Mass Transfer, 66, 23, 10.1016/j.icheatmasstransfer.2015.05.007
Ramires, 1995, Standard reference data for the thermal conductivity of water, J. Phys. Chem. Ref. Data, 24, 1377, 10.1063/1.555963
Yu, 2007, Graphite nanoplatelet-epoxy composite thermal interface materials, J. Phys. Chem. C, 111, 7565, 10.1021/jp071761s
Jang, 2004, Role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett., 84, 4316, 10.1063/1.1756684
Kwek, 2010, Effects of temperature and particle size on the thermal property measurements of Al2O3–water nanofluids, J. Chem. Eng. Data, 55, 5690, 10.1021/je1006407