Effect of particle shape and size distribution on the dissolution behavior of Al2Cu particles during homogenization in aluminum casting alloy Al-Si-Cu-Mg

Journal of Materials Processing Technology - Tập 251 - Trang 232-240 - 2018
Ida Sadeghi1, Mary A. Wells1, Shahrzad Esmaeili1
1Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Tài liệu tham khảo

Aaron, 1970, The effects of curvature on the dissolution kinetics of spherical precipitates, Met. Sci. J., 4, 222, 10.1179/msc.1970.4.1.222 Aaron, 1971, Second phase dissolution, Metall. Trans., 2, 393, 10.1007/BF02663326 Aaron, 1968, On the kinetics of precipitate dissolution, Met. Sci. J., 2, 192, 10.1179/030634568790443170 Apelian, 2008, Vol. 15, 404 Ashiri, 2014, a. On effect of squeezing pressure on microstructural characteristics, heat treatment response and electrical conductivity of an Al-Si-Mg-Ni-Cu alloy, Mater. Sci. Technol., 30, 1162, 10.1179/1743284713Y.0000000405 Ashiri, 2014, Physical, mechanical and dry sliding wear properties of an Al–Si–Mg–Ni–Cu alloy under different processing conditions, J. Alloy Compd., 582, 213, 10.1016/j.jallcom.2013.08.016 Belov, 2002, Advances in metallic alloys, 127 Brown, 1976, Diffusion-controlled dissolution of planar, cylindrical, and spherical precipitates, J. Appl. Phys., 47, 449, 10.1063/1.322669 Ceschini, 2016, Room and high temperature fatigue behaviour of the A354 and C355 (Al–Si–Cu–Mg) alloys: role of microstructure and heat treatment, Mater. Sci. Eng. A, 653, 129, 10.1016/j.msea.2015.12.015 Ceschini, 2017, The Influence of cooling rate on microstructure: tensile and fatigue behavior of heat-treated Al-Si-Cu-Mg alloys, Paper Presented Mater. Sci. Forum, 884, 81, 10.4028/www.scientific.net/MSF.884.81 Colley, 2014, Microstructure–strength models for heat treatment of Al–Si–Mg casting alloys I: microstructure evolution and precipitation kinetics, Can. Metall. Q., 53, 125, 10.1179/1879139513Y.0000000112 Foroozmehr, 2012, Modeling of solutionizing and solute redistribution in a co-cast bi-layer Al alloy system, Metall. Mater. Trans. A, 43, 1770, 10.1007/s11661-011-1068-2 Fredriksson, 2012, 475 Gupta, 2007, Journal of minerals, Met. Mater. Soc., 59, 62, 10.1007/s11837-007-0107-3 Han, 2008, Microstructure characteristics in non-modified and Sr modified Al–Si–Cu–Mg 319 type alloys, Int. J. Cast Met. Res., 21, 371, 10.1179/136404608X343639 Hillert, 1957, Pressure induced diffusion and deformation during precipitation: especially graphitization, Jernkont. Ann, 141, 157 Hu, 2006, Atomistic calculations of interfacial energies, nucleus shape and size of θ′′ precipitates in Al-Cu alloys, Acta Mater., 54, 4699, 10.1016/j.actamat.2006.06.010 Ibrahim, 2011, Metallurgical parameters controlling the microstructure and hardness of Al–Si–Cu–Mg base alloys, Mater. Des., 32, 2130, 10.1016/j.matdes.2010.11.040 Liu, 2009, Precipitation of β-Al5FeSi phase platelets in Al-Si based casting alloys, Metall. Mater. Trans. A, 40, 2457, 10.1007/s11661-009-9944-8 Mackay, 2010, Comparison between wedge test castings and component engine block casting properties, Int. J. Metalcast., 4, 33, 10.1007/BF03355501 Mackay, 2010, Effect of Si and Cu concentrations and solidification rate on soundness in casting structure in Al–Si–Cu alloys, Int. J. Cast Met. Res., 23, 7, 10.1179/174313309X449282 Manente, 2011, Recent trends in processing and degradation of aluminum alloys, 197 Mantina, 2009, First principles impurity diffusion coefficients, Acta Mater., 57, 4102, 10.1016/j.actamat.2009.05.006 Mohamed, 2012, nfluence of Mg and solution heat treatment on the occurrence of incipient melting in Al–Si–Cu–Mg cast alloys, Mater. Sci. Engi. A, 543, 22, 10.1016/j.msea.2012.02.032 Nolfi, 1969, The dissolution and growth kinetics of spherical precipitates, Trans. Metall. Soc. AIME, 245, 1427 Perry, 1966, Acta Metall., 14, 719, 10.1016/0001-6160(66)90119-2 Ragab, 2011, Influence of fluidized sand bed heat treatment on the performance of Al–Si cast alloys, Mater. Des., 32, 1177, 10.1016/j.matdes.2010.10.023 Rometsch, 1999, Modelling dissolution of Mg2Si and homogenisation in Al-Si-Mg casting alloys, Int. J. Cast Met. Res., 12, 1, 10.1080/13640461.1999.11819338 Sadeghi, 2017, Modeling homogenization behavior of Al-Si-Cu-Mg aluminum alloy, Mater. Des., 128, 241, 10.1016/j.matdes.2017.05.006 Samuel, 1998, Incipient melting of Al5Mg8Si6Cu2 and Al2Cu intermetallics in unmodified and strontium-modified Al–Si–Cu–Mg (319) alloys during solution heat treatment, J. Mater. Sci., 33, 2283, 10.1023/A:1004383203476 Seifeddine, 2013, On the role of copper and cooling rates on the microstructure: defect formations and mechanical properties of Al-Si-Mg alloys, Mater. Sci. Appl., 4, 171 Shi, 2015, Microstructural evolution during homogenization of DC cast 7085 aluminum alloy, Trans. Nonferrous Met. Soc. China, 25, 3560, 10.1016/S1003-6326(15)63993-0 Sjolander, 2014, Optimization of solution treatment of cast Al-7Si-0.3Mg and Al-8Si-3Cu-0.5Mg alloys, Metall. Mater. Trans. A, 45, 1916, 10.1007/s11661-013-2141-9 Starke, 2017, Reference module in materials science and materials engineering, alloys: aluminum, Elsevier, 18 Thomas, 1961, Observations of precipitation in thin foils of aluminium +4% copper alloy, Philos. Mag., 6, 1103, 10.1080/14786436108239672 Tundal, 1992, Dissolution of particles in binary alloys: part I. computer simulations, Metall. Trans. A, 23, 433, 10.1007/BF02801160 Vander Voort, 2000 Vermolen, 2000, A mathematical model for the dissolution of particles in multi-component alloys, J. Comput. Appl. Math., 126, 233, 10.1016/S0377-0427(99)00355-6 Voncina, 2014, Effect of Ce on morphology of α(Al)-Al2Cu eutectic in Al-Si-Cu alloy, Trans. Nonferrous Met. Soc. China, 24, 36, 10.1016/S1003-6326(14)63025-9 Whelan, 1969, On the kinetics of precipitate dissolution, Met. Sci. J., 3, 95, 10.1179/msc.1969.3.1.95 Zhang, 2012, Structural, elastic and electronic properties of θ (Al2Cu) and S (Al2CuMg) strengthening precipitates in Al-Cu-Mg series alloys: first-principles calculations, Trans. Nonferrous Met. Soc. China, 152, 2100