Effect of particle shape and size distribution on the dissolution behavior of Al2Cu particles during homogenization in aluminum casting alloy Al-Si-Cu-Mg
Tài liệu tham khảo
Aaron, 1970, The effects of curvature on the dissolution kinetics of spherical precipitates, Met. Sci. J., 4, 222, 10.1179/msc.1970.4.1.222
Aaron, 1971, Second phase dissolution, Metall. Trans., 2, 393, 10.1007/BF02663326
Aaron, 1968, On the kinetics of precipitate dissolution, Met. Sci. J., 2, 192, 10.1179/030634568790443170
Apelian, 2008, Vol. 15, 404
Ashiri, 2014, a. On effect of squeezing pressure on microstructural characteristics, heat treatment response and electrical conductivity of an Al-Si-Mg-Ni-Cu alloy, Mater. Sci. Technol., 30, 1162, 10.1179/1743284713Y.0000000405
Ashiri, 2014, Physical, mechanical and dry sliding wear properties of an Al–Si–Mg–Ni–Cu alloy under different processing conditions, J. Alloy Compd., 582, 213, 10.1016/j.jallcom.2013.08.016
Belov, 2002, Advances in metallic alloys, 127
Brown, 1976, Diffusion-controlled dissolution of planar, cylindrical, and spherical precipitates, J. Appl. Phys., 47, 449, 10.1063/1.322669
Ceschini, 2016, Room and high temperature fatigue behaviour of the A354 and C355 (Al–Si–Cu–Mg) alloys: role of microstructure and heat treatment, Mater. Sci. Eng. A, 653, 129, 10.1016/j.msea.2015.12.015
Ceschini, 2017, The Influence of cooling rate on microstructure: tensile and fatigue behavior of heat-treated Al-Si-Cu-Mg alloys, Paper Presented Mater. Sci. Forum, 884, 81, 10.4028/www.scientific.net/MSF.884.81
Colley, 2014, Microstructure–strength models for heat treatment of Al–Si–Mg casting alloys I: microstructure evolution and precipitation kinetics, Can. Metall. Q., 53, 125, 10.1179/1879139513Y.0000000112
Foroozmehr, 2012, Modeling of solutionizing and solute redistribution in a co-cast bi-layer Al alloy system, Metall. Mater. Trans. A, 43, 1770, 10.1007/s11661-011-1068-2
Fredriksson, 2012, 475
Gupta, 2007, Journal of minerals, Met. Mater. Soc., 59, 62, 10.1007/s11837-007-0107-3
Han, 2008, Microstructure characteristics in non-modified and Sr modified Al–Si–Cu–Mg 319 type alloys, Int. J. Cast Met. Res., 21, 371, 10.1179/136404608X343639
Hillert, 1957, Pressure induced diffusion and deformation during precipitation: especially graphitization, Jernkont. Ann, 141, 157
Hu, 2006, Atomistic calculations of interfacial energies, nucleus shape and size of θ′′ precipitates in Al-Cu alloys, Acta Mater., 54, 4699, 10.1016/j.actamat.2006.06.010
Ibrahim, 2011, Metallurgical parameters controlling the microstructure and hardness of Al–Si–Cu–Mg base alloys, Mater. Des., 32, 2130, 10.1016/j.matdes.2010.11.040
Liu, 2009, Precipitation of β-Al5FeSi phase platelets in Al-Si based casting alloys, Metall. Mater. Trans. A, 40, 2457, 10.1007/s11661-009-9944-8
Mackay, 2010, Comparison between wedge test castings and component engine block casting properties, Int. J. Metalcast., 4, 33, 10.1007/BF03355501
Mackay, 2010, Effect of Si and Cu concentrations and solidification rate on soundness in casting structure in Al–Si–Cu alloys, Int. J. Cast Met. Res., 23, 7, 10.1179/174313309X449282
Manente, 2011, Recent trends in processing and degradation of aluminum alloys, 197
Mantina, 2009, First principles impurity diffusion coefficients, Acta Mater., 57, 4102, 10.1016/j.actamat.2009.05.006
Mohamed, 2012, nfluence of Mg and solution heat treatment on the occurrence of incipient melting in Al–Si–Cu–Mg cast alloys, Mater. Sci. Engi. A, 543, 22, 10.1016/j.msea.2012.02.032
Nolfi, 1969, The dissolution and growth kinetics of spherical precipitates, Trans. Metall. Soc. AIME, 245, 1427
Perry, 1966, Acta Metall., 14, 719, 10.1016/0001-6160(66)90119-2
Ragab, 2011, Influence of fluidized sand bed heat treatment on the performance of Al–Si cast alloys, Mater. Des., 32, 1177, 10.1016/j.matdes.2010.10.023
Rometsch, 1999, Modelling dissolution of Mg2Si and homogenisation in Al-Si-Mg casting alloys, Int. J. Cast Met. Res., 12, 1, 10.1080/13640461.1999.11819338
Sadeghi, 2017, Modeling homogenization behavior of Al-Si-Cu-Mg aluminum alloy, Mater. Des., 128, 241, 10.1016/j.matdes.2017.05.006
Samuel, 1998, Incipient melting of Al5Mg8Si6Cu2 and Al2Cu intermetallics in unmodified and strontium-modified Al–Si–Cu–Mg (319) alloys during solution heat treatment, J. Mater. Sci., 33, 2283, 10.1023/A:1004383203476
Seifeddine, 2013, On the role of copper and cooling rates on the microstructure: defect formations and mechanical properties of Al-Si-Mg alloys, Mater. Sci. Appl., 4, 171
Shi, 2015, Microstructural evolution during homogenization of DC cast 7085 aluminum alloy, Trans. Nonferrous Met. Soc. China, 25, 3560, 10.1016/S1003-6326(15)63993-0
Sjolander, 2014, Optimization of solution treatment of cast Al-7Si-0.3Mg and Al-8Si-3Cu-0.5Mg alloys, Metall. Mater. Trans. A, 45, 1916, 10.1007/s11661-013-2141-9
Starke, 2017, Reference module in materials science and materials engineering, alloys: aluminum, Elsevier, 18
Thomas, 1961, Observations of precipitation in thin foils of aluminium +4% copper alloy, Philos. Mag., 6, 1103, 10.1080/14786436108239672
Tundal, 1992, Dissolution of particles in binary alloys: part I. computer simulations, Metall. Trans. A, 23, 433, 10.1007/BF02801160
Vander Voort, 2000
Vermolen, 2000, A mathematical model for the dissolution of particles in multi-component alloys, J. Comput. Appl. Math., 126, 233, 10.1016/S0377-0427(99)00355-6
Voncina, 2014, Effect of Ce on morphology of α(Al)-Al2Cu eutectic in Al-Si-Cu alloy, Trans. Nonferrous Met. Soc. China, 24, 36, 10.1016/S1003-6326(14)63025-9
Whelan, 1969, On the kinetics of precipitate dissolution, Met. Sci. J., 3, 95, 10.1179/msc.1969.3.1.95
Zhang, 2012, Structural, elastic and electronic properties of θ (Al2Cu) and S (Al2CuMg) strengthening precipitates in Al-Cu-Mg series alloys: first-principles calculations, Trans. Nonferrous Met. Soc. China, 152, 2100