Effect of pH on xylitol production by <i>Candida</i> species from a prairie cordgrass hydrolysate

Zeitschrift fur Naturforschung - Section C Journal of Biosciences - Tập 75 Số 11-12 - Trang 489-493 - 2020
Samatha S. R. Rudrangi1, Thomas P. West1
1Department of Chemistry , Texas A&M University-Commerce , Commerce , 75429 , TX , USA

Tóm tắt

Abstract Using hydrolysates of the North American prairie grass prairie cordgrass buffered at pH 4.5, 5.0, 5.5 or 6.0, xylitol production, xylitol yield, cell biomass production and productivity were investigated for three strains of yeast Candida. Of the three strains, the highest xylitol concentration of 20.19 g xylitol (g xylose consumed)−1 and yield of 0.89 g xylitol (g xylose consumed)−1 were produced by Candida mogi ATCC 18364 when grown for 120 h at 30° C on the pH 5.5-buffered hydrolysate-containing medium. The highest biomass level being 7.7 g cells (kg biomass)−1 was observed to be synthesized by Candida guilliermondii ATCC 201935 after 120 h of growth at 30° C on a pH 5.5-buffered hydrolysate-containing medium. The highest xylitol specific productivity of 0.73 g xylitol (g cells h)−1 was determined for C. guilliermondii ATCC 20216 after 120 h of growth at 30°C on a pH 5.0-buffered hydrolysate-containing medium. Xylitol production and yield by the three Candida strains was higher on prairie cordgrass than what was previously observed for the same strains after 120 h at 30° C when another North American prairie grass big bluestem served as the plant biomass hydrolysate indicating that prairie cordgrass may be a superior plant biomass substrate.

Từ khóa


Tài liệu tham khảo

Gränstrom, TB, Izumori, K, Leisola, M. A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl Microbiol Biotechnol 2007;74:273–6. https://doi.org/10.1007/s00253-006-0760-4.

Ur-Rehman, S, Mushtaq, Z, Zahoor, T, Jamil, A, Murtaza, MA. Xylitol: a review on bioproduction, application, health benefits, and related safety issues. Crit Rev Food Sci Nutr 2015;55:1514–28. https://doi.org/10.1080/10408398.2012.702288.

Petch, D, Butler, M. The effect of alternative carbohydrates on the growth and antibody production of a murine hybridoma. Appl Biochem Biotechnol 1996;59:93–104. https://doi.org/10.1007/bf02787861.

Uhari, M, Kontiokari, T, Niemela, M. A novel use of xylitol sugar in preventing acute otitis media. Pediatrics 1988;102:879–84. https://doi.org/10.1542/peds.102.4.879.

Silva, SS, Matos, ZR, Carvalho, W. Effects of sulfuric acid loading and resident time on the composition of sugarcane bagasse hydrolysate and its use as a source of xylose for xylitol bioproduction. Biotechnol Prog 2005;21:1449–52. https://doi.org/10.1021/bp0502025.

Zhang, Y-HP. Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. J Ind Microbiol Biotechnol 2008;35:367–75. https://doi.org/10.1007/s10295-007-0293-6.

Mulkey, VR, Owens, VN, Lee, DK. Management of warm-season grass mixtures for biomass production in South Dakota USA. Bioresour Technol 2008;99:609–17. https://doi.org/10.1016/j.biortech.2006.12.035.

Kennedy, DEII, West, TP. Effect of yeast extract addition to a mineral salts medium containing hydrolyzed plant xylan on fungal pullulan production. Z Naturforsch C 2018;73:319–23. https://doi.org/10.1515/znc-2018-0018.

Garrote, G, Dominguez, H, Parajo, JC. Manufacture of xylose-based fermentation media from corncobs by posthydrolysis of autohydrolysis liquors. Appl Biochem Biotechnol 2001;95:195–207. https://doi.org/10.1385/abab:95:3:195.

Onishi, H, Suzuki, T. Microbial production of xylitol from glucose. Appl Microbiol 1969;18:1031–5. https://doi.org/10.1128/aem.18.6.1031-1035.1969.

Gong, C-S, Claypool, TA, McCracken, LD, Maun, CM, Ueng, PP, Tsao, GT. Conversion of pentoses by yeasts. Biotechnol Bioeng 1983;25:85–102. https://doi.org/10.1002/bit.260250108.

Barbosa, MFS, de Medeiros, MB, de Mancilha, IM, Schneider, H, Lee, H. Screening of yeasts for production of xylitol from D-xylose and some factors which affect xylitol yield in Candida guilliermondii. J Ind Microbiol 1988;3:241–51. https://doi.org/10.1007/bf01569582.

Tochampa, W, Sirisansaneeyakul, S, Vanichsriratana, W, Srinophakun, P, Bakker, HHC, Chisti, Y. A model of xylitol production by the yeast Candida mogii. Bioproc Biosyst Eng 2005;28:175–83. https://doi.org/10.1007/s00449-005-0025-0.

Guo, C, Zhao, C, He, P, Shen, A, Jiang, N. Screening and characterization of yeasts for xylitol production. J Appl Microbiol 2006;101:1096–104. https://doi.org/10.1111/j.1365-2672.2006.02994.x.

Cortez, DV, Roberto, IC. Effect of phosphate buffer concentration on the batch xylitol production by Candida guilliermondii. Lett Appl Microbiol 2006;42:321–5. https://doi.org/10.1111/j.1472-765x.2006.01864.x.

Wannawilaia, S, Sirisansaneeyakula, S, Chisti, Y. Benzoate-induced stress enhances xylitol yield in aerobic fed-batch culture of Candida mogii TISTR 5892. J Biotechnol 2015;194:58–66. https://doi.org/10.1016/j.jbiotec.2014.11.037.

Mayerhoff, ZDVL, Roberto, IC, Silva, SS. Xylitol production from rice straw hemicellulose using different yeast strains. Biotechnol Lett 1997;19:407–9. https://doi.org/10.1023/a:1018375506584.

Silva, SS, Ribeiro, JD, Felipe, MGA, Vitolo, M. Maximizing the xylitol production from sugar cane bagasse hydrolysate by controlling the aeration rate. Appl Biochem Biotechnol 1997;63-65:558–63. https://doi.org/10.1007/978-1-4612-2312-2_47.

Altamirano, A, Vazquez, F, de Figueroa, LIC. Isolation and identification of xylitol-producing yeasts from agricultural residues. Folia Microbiol 2000;45:255–8. https://doi.org/10.1007/bf02908955.

Rodrigues, RCLB, Felipe, MGA, Roberto, IC, Vitolo, M. Batch xylitol production by Candida guilliermondii FTI 20037 from sugarcane bagasse hemicellulosic hydrolyzate at controlled pH values. Bioproc Biosyst Eng 2003;26:103–7. https://doi.org/10.1007/s00449-003-0332-2.

Mussatto, SI, Santo, JC, Roberto, IC. Effect of pH and activated charcoal adsorption on hemicellulosic hydrolysate detoxification for xylitol production. J Chem Technol Biotechnol 2004;79:590–6. https://doi.org/10.1002/jctb.1026.

Rodrigues, RCLB, Sene, L, Matos, GS, Roberto, IC, PessoaJr., Felipe, MGA. Enhanced xylitol production by precultivation of Candida guilliermondii cells in sugarcane bagasse hemicellulosic hydrolysate. Curr Microbiol 2006;53:53–9. https://doi.org/10.1007/s00284-005-0242-4.

Gurpilhares, DB, Hasmann, FA, Pessoa, AJr, Roberto, IC. The behavior of key enzymes of xylose metabolism on the xylitol production by Candida guilliermondii grown in hemicellulosic hydrolysate. J Ind Microbiol Biotechnol 2009;36:87–93. https://doi.org/10.1007/s10295-008-0475-x.

West, TP. Xylitol production by Candida species grown on a grass hydrolysate. World J Microbiol Biotechnol 2009;25:913–6. https://doi.org/10.1007/s11274-008-9947-4.

Sene, L, Arruda, PV, Oliveira, SMM, Felipe, MGA. Evaluation of sorghum straw hemicellulosic hydrolysate for biotechnological production of xylitol by Candida guilliermondii. Braz J Microbiol 2011;42:1141–6. https://doi.org/10.1590/s1517-83822011000300036.

Hernández-Pérez, AF, Arruda, PV, Felipe, MGA. Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037. Braz J Microbiol 2016;47:489–96. https://doi.org/10.1016/j.bjm.2016.01.019.

López-Linaresa, JC, Romeroa, I, Caraa, C, Castroa, E, Mussatto, SI. Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresour Technol 2018;247:736–43. https://doi.org/10.1016/j.biortech.2017.09.139.

West, TP. Fungal production of the polysaccharide pullulan from a plant hydrolysate. Z Naturforsch C 2017;72:491–5. https://doi.org/10.1515/znc-2017-0032.