Effect of oxygen vacancy on electronic structure and optical spectra of SrO crystal

Materials Science in Semiconductor Processing - Tập 133 - Trang 105940 - 2021
Ru-xi Sun1, Ting-yu Liu1, Chun-yu Shi1, Jia-mei Song1, Kai-li Wu1
1College of Science, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, PR China

Tài liệu tham khảo

McLeod, 2010, Band gaps and electronic structure of alkaline-earth and post-transition-metal oxides, Phys. Rev. B, 81, 245123, 10.1103/PhysRevB.81.245123 Lushchik, 1994, Multiplication of electronic excitations in CaO and YAlO3 crystals with free and self-trapped excitons, J. Phys. Condens. Matter, 6, 11177, 10.1088/0953-8984/6/50/025 Rinke, 2012, First-principles optical spectra for F centers in MgO, Phys. Rev. Lett., 108, 12640, 10.1103/PhysRevLett.108.126404 Feldbach, 1995, Electronic excitations and UV luminescence in SrO crystals at 8 K, Chem. Phys. Lett., 241, 597, 10.1016/0009-2614(95)00672-Q Stepanyuk, 1992, Electronic structure and optical characteristics of alkaline‐earth oxides, Phys. Status Solidi, 173, 633, 10.1002/pssb.2221730216 Ahmad Teli, 2020, The origin of half-metallicity in SrO doped with transition MetalAtoms silver and gold: a first principles calculations, J. Supercond. Nov. Magnetism, 33, 2795, 10.1007/s10948-020-05532-z Berber, 2018, First-principle predictions of electronic properties and half-metallic ferromagnetism in vanadium-doped rock-salt SrO, J. Electron. Mater., 47, 1, 10.1007/s11664-017-5793-1 Ahmad Teli, 2020, Effect of 3d transition metal atoms in SrO to predict half-metallicferromagnetism: a first principles study, J. Magn. Magn Mater., 511, 166829, 10.1016/j.jmmm.2020.166829 Yoshimura, 2012, Sputtering yields of CaO, SrO, and BaO by monochromatic noble gas ion bombardment, Jpn. J. Appl. Phys., 51, 10.1143/JJAP.51.08HB02 Fu, 2000, Orange and red emitting long-lasting phosphors MO:Eu3+ (M = Ca, Sr, Ba), Electrochem. Solid State Lett., 3, 350, 10.1149/1.1391146 Mari, 2012, Characterization and photoluminescence properties of some CaO, SrO and CaSrO2phosphors co-doped with Eu3+ and alkali metal ions, Opt. Mater., 34, 1267, 10.1016/j.optmat.2012.01.032 Teli1, 2020, The origin of half-metallicity in SrO doped with transition metal atoms silver and gold: a first principles calculations, J. Supercond. Nov. Magnetism, 33, 2795, 10.1007/s10948-020-05532-z Kotomin, 1998, Radiation-induced point defects in simple oxides, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 141, 1, 10.1016/S0168-583X(98)00079-2 Popov, 2010, Basic properties of the F-type centers in halides, oxides and perovskites, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 268, 3084, 10.1016/j.nimb.2010.05.053 Feldott, 1976, Photoconductivity of strontium oxide containing F+ centres, Solid State Commun., 18, 347, 10.1016/0038-1098(76)90019-3 Wilson, 1977, Electronic structure of the F center in SrO, Phys. Rev. B, 16, 4594, 10.1103/PhysRevB.16.4594 Abraham, 1979, ENDOR of F+ centers in SrO, J. Chem. Phys., 71, 3658, 10.1063/1.438809 Ma, 2016, Study on the electronic structures and optical absorption of F center inthe SrO crystal with G0W0 –BSE, Computational and Theoretical Chemistry, 1080, 79, 10.1016/j.comptc.2016.01.019 Heyd, 2003, Hybrid functionals basedon a screened Coulomb potential, J. Chem. Phys., 118, 8207, 10.1063/1.1564060 Stoliaroff, 2020, Accurate ab initio calculations on various PV-based materials:which functional to Be used?, J. Phys. Chem. C, 124, 8467, 10.1021/acs.jpcc.9b10821 Deak, 2019, Optimized hybrid functionals for defect calculations in semiconductors, J. Appl. Phys., 126, 130901, 10.1063/1.5110643 Peter, 2019, Defect calculations with hybrid functionals in layered compounds and in slab models, Phys. Rev. B, 100, 235304, 10.1103/PhysRevB.100.235304 Fu, 2015, A convenient and efficient synthesis method to improve the emission intensity of rare earth ion doped phosphors: the synthesis and luminescent properties of novel SrO:Ce3+ phosphor, RSC Adv., 5, 93951, 10.1039/C5RA15089B Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0 Segall, 2002, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter, 14, 2717, 10.1088/0953-8984/14/11/301 Li, 2016, First-principles design of spintronics materials, Natl. Sci. Rev., 3, 365, 10.1093/nsr/nww026 Rao, 1979, Logarithmic derivative reflectance spectra of BaO and SrO, Phys. Status Solidi B, 95, 243, 10.1002/pssb.2220950127 Komsa, 2012, Finite-size supercell correction schemes for charged defect calculations, Phys. Rev. B, 86, 10.1103/PhysRevB.86.045112 Kumagai, 2014, Electrostatics-based finite-size corrections for first-principles point defect calculations, Phys. Rev. B, 89, 19520, 10.1103/PhysRevB.89.195205 Huang, 1950, Theory of light absorption and non-radiative transitions in F-centres, vol. 204, 1078 Modine, 2015, DFT calculations of activation energies for carrier capture by defects in semiconductors Alkauskas, 2014, First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres, New J. Phys., 16, 10.1088/1367-2630/16/7/073026 Alkauskas, 2016, Defects in semiconductors—combining experiment and theory, J. Appl. Phys., 119, 181101, 10.1063/1.4948245 Johnson, 1969, Additive coloration of strontium oxide, Phys. Rev. B, 180, 931, 10.1103/PhysRev.180.931 Hughes, 1973, Vibronic properties of the F+ centre in strontium oxide, Solid State Commun., 13, 167, 10.1016/0038-1098(73)90218-4