Effect of oxygen vacancy on electronic structure and optical spectra of SrO crystal
Tài liệu tham khảo
McLeod, 2010, Band gaps and electronic structure of alkaline-earth and post-transition-metal oxides, Phys. Rev. B, 81, 245123, 10.1103/PhysRevB.81.245123
Lushchik, 1994, Multiplication of electronic excitations in CaO and YAlO3 crystals with free and self-trapped excitons, J. Phys. Condens. Matter, 6, 11177, 10.1088/0953-8984/6/50/025
Rinke, 2012, First-principles optical spectra for F centers in MgO, Phys. Rev. Lett., 108, 12640, 10.1103/PhysRevLett.108.126404
Feldbach, 1995, Electronic excitations and UV luminescence in SrO crystals at 8 K, Chem. Phys. Lett., 241, 597, 10.1016/0009-2614(95)00672-Q
Stepanyuk, 1992, Electronic structure and optical characteristics of alkaline‐earth oxides, Phys. Status Solidi, 173, 633, 10.1002/pssb.2221730216
Ahmad Teli, 2020, The origin of half-metallicity in SrO doped with transition MetalAtoms silver and gold: a first principles calculations, J. Supercond. Nov. Magnetism, 33, 2795, 10.1007/s10948-020-05532-z
Berber, 2018, First-principle predictions of electronic properties and half-metallic ferromagnetism in vanadium-doped rock-salt SrO, J. Electron. Mater., 47, 1, 10.1007/s11664-017-5793-1
Ahmad Teli, 2020, Effect of 3d transition metal atoms in SrO to predict half-metallicferromagnetism: a first principles study, J. Magn. Magn Mater., 511, 166829, 10.1016/j.jmmm.2020.166829
Yoshimura, 2012, Sputtering yields of CaO, SrO, and BaO by monochromatic noble gas ion bombardment, Jpn. J. Appl. Phys., 51, 10.1143/JJAP.51.08HB02
Fu, 2000, Orange and red emitting long-lasting phosphors MO:Eu3+ (M = Ca, Sr, Ba), Electrochem. Solid State Lett., 3, 350, 10.1149/1.1391146
Mari, 2012, Characterization and photoluminescence properties of some CaO, SrO and CaSrO2phosphors co-doped with Eu3+ and alkali metal ions, Opt. Mater., 34, 1267, 10.1016/j.optmat.2012.01.032
Teli1, 2020, The origin of half-metallicity in SrO doped with transition metal atoms silver and gold: a first principles calculations, J. Supercond. Nov. Magnetism, 33, 2795, 10.1007/s10948-020-05532-z
Kotomin, 1998, Radiation-induced point defects in simple oxides, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 141, 1, 10.1016/S0168-583X(98)00079-2
Popov, 2010, Basic properties of the F-type centers in halides, oxides and perovskites, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 268, 3084, 10.1016/j.nimb.2010.05.053
Feldott, 1976, Photoconductivity of strontium oxide containing F+ centres, Solid State Commun., 18, 347, 10.1016/0038-1098(76)90019-3
Wilson, 1977, Electronic structure of the F center in SrO, Phys. Rev. B, 16, 4594, 10.1103/PhysRevB.16.4594
Abraham, 1979, ENDOR of F+ centers in SrO, J. Chem. Phys., 71, 3658, 10.1063/1.438809
Ma, 2016, Study on the electronic structures and optical absorption of F center inthe SrO crystal with G0W0 –BSE, Computational and Theoretical Chemistry, 1080, 79, 10.1016/j.comptc.2016.01.019
Heyd, 2003, Hybrid functionals basedon a screened Coulomb potential, J. Chem. Phys., 118, 8207, 10.1063/1.1564060
Stoliaroff, 2020, Accurate ab initio calculations on various PV-based materials:which functional to Be used?, J. Phys. Chem. C, 124, 8467, 10.1021/acs.jpcc.9b10821
Deak, 2019, Optimized hybrid functionals for defect calculations in semiconductors, J. Appl. Phys., 126, 130901, 10.1063/1.5110643
Peter, 2019, Defect calculations with hybrid functionals in layered compounds and in slab models, Phys. Rev. B, 100, 235304, 10.1103/PhysRevB.100.235304
Fu, 2015, A convenient and efficient synthesis method to improve the emission intensity of rare earth ion doped phosphors: the synthesis and luminescent properties of novel SrO:Ce3+ phosphor, RSC Adv., 5, 93951, 10.1039/C5RA15089B
Kresse, 1996, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci., 6, 15, 10.1016/0927-0256(96)00008-0
Segall, 2002, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter, 14, 2717, 10.1088/0953-8984/14/11/301
Li, 2016, First-principles design of spintronics materials, Natl. Sci. Rev., 3, 365, 10.1093/nsr/nww026
Rao, 1979, Logarithmic derivative reflectance spectra of BaO and SrO, Phys. Status Solidi B, 95, 243, 10.1002/pssb.2220950127
Komsa, 2012, Finite-size supercell correction schemes for charged defect calculations, Phys. Rev. B, 86, 10.1103/PhysRevB.86.045112
Kumagai, 2014, Electrostatics-based finite-size corrections for first-principles point defect calculations, Phys. Rev. B, 89, 19520, 10.1103/PhysRevB.89.195205
Huang, 1950, Theory of light absorption and non-radiative transitions in F-centres, vol. 204, 1078
Modine, 2015, DFT calculations of activation energies for carrier capture by defects in semiconductors
Alkauskas, 2014, First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres, New J. Phys., 16, 10.1088/1367-2630/16/7/073026
Alkauskas, 2016, Defects in semiconductors—combining experiment and theory, J. Appl. Phys., 119, 181101, 10.1063/1.4948245
Johnson, 1969, Additive coloration of strontium oxide, Phys. Rev. B, 180, 931, 10.1103/PhysRev.180.931
Hughes, 1973, Vibronic properties of the F+ centre in strontium oxide, Solid State Commun., 13, 167, 10.1016/0038-1098(73)90218-4