Effect of non-stoichiometric solution chemistry on improving the performance of wide-bandgap perovskite solar cells

Materials Today Energy - Tập 7 - Trang 232-238 - 2018
Mengjin Yang1, Dong Hoe Kim1, Yue Yu2, Zhen Li1, Obadiah G. Reid1, Zhaoning Song2, Dewei Zhao2, Changlei Wang2, Liwei Li3,4, Yuan Meng3,4, Ted Guo3,4, Yanfa Yan2, Kai Zhu1
1Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO 80401, United States
2Department of Physics and Astronomy, The University of Toledo, Toledo, OH 43606, United States
3ENN Energy Research Institute, Langfang 065001, China
4ENN Solar Energy Co., Ltd., Langfang 065001, China

Tài liệu tham khảo

Kojima, 2009, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r Kim, 2012, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2, 591, 10.1038/srep00591 Lee, 2012, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites, Science, 338, 643, 10.1126/science.1228604 Yang, 2017, Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells, Science, 356, 1376, 10.1126/science.aan2301 Tan, 2014, Bright light-emitting diodes based on organometal halide perovskite, Nat. Nanotechnol., 9, 687, 10.1038/nnano.2014.149 Dou, 2014, Solution-processed hybrid perovskite photodetectors with high detectivity, Nat. Commun., 5, 5404, 10.1038/ncomms6404 Wei, 2016, Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals, Nat. Photonics, 10, 333, 10.1038/nphoton.2016.41 Wei, 2017, Dopant compensation in alloyed CH3NH3PbBr3-xClx perovskite single crystals for gamma-ray spectroscopy, Nat. Mater., 16, 826, 10.1038/nmat4927 Eperon, 2016, Perovskite-perovskite tandem photovoltaics with optimized band gaps, Science, 354, 861, 10.1126/science.aaf9717 Forgács, 2017, Efficient monolithic perovskite/perovskite tandem solar cells, Adv. Energy Mater., 7, 10.1002/aenm.201602121 Rajagopal, 2017, Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage, Adv. Mater., 29, 10.1002/adma.201702140 Zhao, 2017, Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells, Nat. Energy, 2, 10.1038/nenergy.2017.18 McMeekin, 2016, A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells, Science, 351, 151, 10.1126/science.aad5845 Duong, 2017, Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency, Adv. Energy Mater., 10.1002/aenm.201700228 Bush, 2017, 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability, Nat. Energy, 2, 17009, 10.1038/nenergy.2017.9 Todorov, 2015, Monolithic perovskite-CIGS tandem solar cells via in situ band gap engineering, Adv. Energy Mater., 5, 10.1002/aenm.201500799 Zhao, 2014, Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition, J. Am. Chem. Soc., 136, 12241, 10.1021/ja5071398 Eperon, 2014, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells, Energy Environ. Sci., 7, 982, 10.1039/c3ee43822h Hoke, 2015, Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics, Chem. Sci., 6, 613, 10.1039/C4SC03141E Ke, 2016, Employing lead thiocyanate additive to reduce the hysteresis and boost the fill factor of planar perovskite solar cells, Adv. Mater., 28, 5214, 10.1002/adma.201600594 Yu, 2016, Improving the performance of formamidinium and cesium lead triiodide perovskite solar cells using lead thiocyanate additives, ChemSusChem, 9, 3288, 10.1002/cssc.201601027 Yu, 2017, Synergistic effects of lead thiocyanate additive and solvent annealing on the performance of wide-bandgap perovskite solar cells, ACS Energy Lett., 2, 1177, 10.1021/acsenergylett.7b00278 Yang, 2015, Square-centimeter solution-processed planar CH3NH3PbI3 perovskite solar cells with efficiency exceeding 15%, Adv. Mater., 27, 6363, 10.1002/adma.201502586 Yang, 2016, Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening, Nat. Commun., 7, 12305, 10.1038/ncomms12305 Zhao, 2014, CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells, J. Phys. Chem. C, 118, 9412, 10.1021/jp502696w Yang, 2017, Perovskite ink with wide processing window for scalable high-efficiency solar cells, Nat. Energy, 2, 17038, 10.1038/nenergy.2017.38 Chen, 2015, The optoelectronic role of chlorine in CH3NH3PbI3 (Cl)-based perovskite solar cells, Nat. Commun., 6, 7269, 10.1038/ncomms8269 Kim, 2017, 300% enhancement of carrier mobility in uniaxial-oriented perovskite films formed by topotactic-oriented attachment, Adv. Mater., 29 Fei, 2017, Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 film, Adv. Energy Mater., 7, 10.1002/aenm.201602017 McMeekin, 2017, Crystallization kinetics and morphology control of formamidinium–cesium mixed-cation lead mixed-halide perovskite via tunability of the colloidal precursor solution, Adv. Mater., 10.1002/adma.201607039 Jiang, 2016, Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells, Nat. Energy, 2, 16177, 10.1038/nenergy.2016.177 Anaraki, 2016, Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide, Energy Environ. Sci., 9, 3128, 10.1039/C6EE02390H Zhang, 2014, An ultrathin, smooth, and low-loss Al-Doped Ag film and its application as a transparent electrode in organic photovoltaics, Adv. Mater., 26, 5696, 10.1002/adma.201306091 Zhao, 2015, High-performance Ta2O5/Al-Doped Ag electrode for resonant light harvesting in efficient organic solar cells, Adv. Energy Mater., 5, 10.1002/aenm.201500768 Zhao, 2011, Optimization of inverted tandem organic solar cells, Sol. Energy Mater. Sol. Cells, 95, 921, 10.1016/j.solmat.2010.11.023