Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana

Egyptian Journal of Aquatic Research - Tập 46 - Trang 153-158 - 2020
Mohammad Javad Zarrinmehr1, Omidvar Farhadian1, Fatemeh Paykan Heyrati1, Javad Keramat2, Eleni Koutra3, Michael Kornaros3, Ehsan Daneshvar4
1Department of Natural Resources, Isfahan University of Technology, Isfahan 84156, Iran
2Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156, Iran
3Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
4Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland

Tài liệu tham khảo

Blair, 2014, Light and growth medium effect on Chlorella vulgaris biomass production, J. Environ. Chem. Eng., 2, 665, 10.1016/j.jece.2013.11.005 Bonfanti, 2018, Potential of microalga Isochrysis galbana: Bioactivity and bio accessibility, Algal Res., 29, 242, 10.1016/j.algal.2017.11.035 Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3 Daneshvar, 2018, Investigation on the feasibility of Chlorella vulgaris cultivation in a mixture of pulp and aquaculture effluents: treatment of wastewater and lipid extraction, Bioresour. Technol., 255, 104, 10.1016/j.biortech.2018.01.101 El-Kassas, 2013, Growth and fatty acid profile of the marine microalga Picochlorum sp. grown under nutrient stress conditions, Egypt. J. Aquat. Res., 39, 233, 10.1016/j.ejar.2013.12.007 Fan, 2012, Oil accumulation is controlled by carbon precursor supply for fatty acid synthesis in Chlamydomonas reinhardtii, Plant Cell Physiol., 53, 1380, 10.1093/pcp/pcs082 Fan, 2014, Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors, Biotechnol. Biofuels, 7, 17, 10.1186/1754-6834-7-17 Fidalgo, 1998, Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana, Aquaculture, 166, 105, 10.1016/S0044-8486(98)00278-6 Foo, 2017, Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents, J. Biotechnol., 241, 175, 10.1016/j.jbiotec.2016.11.026 Guihéneuf, 2015, Towards the bio refinery concept: Interaction of light, temperature and nitrogen for optimizing the co-production of high-value compounds in Porphyridium purpureum, Algal Res., 10, 152, 10.1016/j.algal.2015.04.025 Lamers, 2012, Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga, J. Biotechnol., 162, 21, 10.1016/j.jbiotec.2012.04.018 Levine, 2011, Neochlorisoleo abundans grown on an aerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production, Biomass Bioenergy, 35, 40, 10.1016/j.biombioe.2010.08.035 Li, 2008, Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochlorisoleo abundans, Appl. Microbiol. Biotechnol., 81, 629, 10.1007/s00253-008-1681-1 Lin, 2007, Influence of growth phase and nutrient source on fatty acid composition of Isochrysis galbana CCMP 1324 in a batch photoreactor, Biochem. Eng. J., 37, 166, 10.1016/j.bej.2007.04.014 Lora-Vilchis, 2004, Evaluation of five microalgae diets for juvenile pen shells Atrinamaura, J. World Aquacult Soc., 35, 232, 10.1111/j.1749-7345.2004.tb01079.x Markou, 2012, Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels, Appl. Microbiol. Biotechnol., 96, 631, 10.1007/s00253-012-4398-0 Martinez, 1975 Napolitano, 1990, Fatty acid composition of three cultured algal species (isochvysis galbana, chaetoceros gracilis and chaetoceros calcitrans) used as food for bivalve larvae, J. World Aquacult Soc., 21, 122, 10.1111/j.1749-7345.1990.tb00532.x Pancha, 2014, Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077, Bioresour. Technol., 156, 146, 10.1016/j.biortech.2014.01.025 Rao, 1989, Reevaluation of the phenol-sulfuric acid reaction for the estimation of hexoses and pentoses, Anal. Biochem., 181, 18, 10.1016/0003-2697(89)90387-4 Rausch, 1981, The estimation of micro-algal protein content and its meaning to the evaluation of algal biomass I. Comparison of methods for extracting protein, Hydrobiologia, 78, 237, 10.1007/BF00008520 Roncarati, 2004, Fatty acid composition of different microalgae strains (Nannochloropsis sp., Nannochloropsis oculata (Droop) Hibberd, Nannochlorisatomus Butcher and Isochrysis sp. according to the culture phase and the carbon dioxide concentration, J. World Aquacult Soc., 35, 401, 10.1111/j.1749-7345.2004.tb00104.x Shen, 2016, Combining nitrogen starvation with sufficient phosphorus supply for enhanced biodiesel productivity of Chlorella vulgaris fed on acetate, Algal Res., 17, 261, 10.1016/j.algal.2016.05.018 Singhasuwan, 2015, Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of hetero trophically grown Chlorella sp. TISTR 8990 for biodiesel production, J. Biotechnol., 216, 169, 10.1016/j.jbiotec.2015.10.003 Solovchenko, 2013, Probing the effects of high-light stress on pigment and lipid metabolism in nitrogen-starving microalgae by measuring chlorophyll fluorescence transients: studies with a Δ5 desaturase mutant of Parieto chlorisincisa (Chlorophyta, Trebouxiophyceae), Algal Res., 2, 175, 10.1016/j.algal.2013.01.010 Tam, 1996, Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media, Bioresour. Technol., 57, 45, 10.1016/0960-8524(96)00045-4 Tebbani, 2014 Tompkins, J., MM (Mitzi) De Ville, Day, J.G., Turner, M.F., 1995. Culture Collection of Algae & Protozoa: Catalogue of Strains. Wang, 2014, Mixotrophic cultivation of microalgae for biodiesel production: status and prospects, Appl. Biochem. Biotechnol., 172, 3307, 10.1007/s12010-014-0729-1 Wang, 2014, Identification of carbohydrates as the major carbon sink of the marine microalga Isochrysis zhangjiangensis (Haptophyta) and optimization of its productivity by nitrogen manipulation, Bioresour. Technol., 171, 298, 10.1016/j.biortech.2014.08.090 Wellburn, 1994, The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution, J. Plant Physiol., 144, 307, 10.1016/S0176-1617(11)81192-2 Xie, 2017, Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: over-compensation strategy, Bioresour. Technol., 233, 247, 10.1016/j.biortech.2017.02.099 Yuan, 2018, Enhancing carbohydrate productivity of Chlorella sp. AE10 in semi-continuous cultivation and unraveling the mechanism by flow cytometry, Appl. Biochem. Biotechnol., 185, 419, 10.1007/s12010-017-2667-1 Yun, 2014, Isolation of novel microalgae from acid mine drainage and its potential application for biodiesel production, Appl. Biochem. Biotechnol., 173, 2054, 10.1007/s12010-014-1002-3 Zhang, 2016, Enhanced fatty acid accumulation in Isochrysis galbana by inhibition of the mitochondrial alternative oxidase pathway under nitrogen deprivation, Bioresour. Technol., 211, 783, 10.1016/j.biortech.2016.03.164 Zhu, 2014, Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis, Bioresour. Technol., 152, 292, 10.1016/j.biortech.2013.10.092 Zhu, 2015, Characterization of lipid and fatty acids composition of Chlorella zofingiensis in response to nitrogen starvation, J. Biosci. Bioeng., 120, 205, 10.1016/j.jbiosc.2014.12.018