Effect of multi-walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy-based nanocomposites
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zunjarrao, 2006, Characterization of the fracture behavior of epoxy reinforced with nanometer and micrometer sized aluminum particles, Compos. Sci. Technol., 66, 2296, 10.1016/j.compscitech.2005.12.001
Chatterjee, 2008, Fabrication and characterization of TiO2–epoxy nanocomposite, Mater. Sci. Eng., A., 487, 574, 10.1016/j.msea.2007.11.052
Fang, 2010, Effect of in situ surface-modified nano-SiO2 on the thermal and mechanical properties and crystallization behavior of nylon 1010, J. Polym. Sci., 115, 3339
Sharma, 2010, Improvement in voltage, thermal, mechanical stability and ion transport properties in polymer-clay nanocomposites, J. Appl. Polym. Sci., 118, 2743, 10.1002/app.32677
Francis, 2010, Synthesis, characterization and mechanical properties of nylon-silver composite nanofibers prepared by electrospinning, Curr. Appl. Phys., 10, 1005, 10.1016/j.cap.2009.12.025
Tai, 2004, Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the reinforcement, Carbon, 42, 2774, 10.1016/j.carbon.2004.06.002
Blond, 2006, Enhancement of modulus, strength, and toughness in poly(methyl methacrylate)-based composites by the incorporation of poly(methyl methacrylate)-functionalized nanotubes, Adv. Funct. Mater., 16, 1608, 10.1002/adfm.200500855
Montazeri, 2010, Mechanical properties of multi-walled carbon nanotube/epoxy composites, Mater. Des., 31, 4202, 10.1016/j.matdes.2010.04.018
Montazeri, 2010, Viscoelastic properties of multi-walled carbon nanotube/epoxy composites using two different curing cycles, Mater. Des., 31, 3383, 10.1016/j.matdes.2010.01.051
Gao, 2008, Functionalized multi-walled carbon nanotubes improve nonisothermal crystallization of poly(ethylene terephthalate), Polym. Test., 27, 179, 10.1016/j.polymertesting.2007.09.012
Chen, 2007, Effect of dispersion method on tribological properties of carbon nanotube reinforced epoxy resin composites, Polym. Test., 26, 351, 10.1016/j.polymertesting.2006.11.004
Xue, 2006, Tribological behaviour of UHMWPE/HDPE blends reinforced with multi-wall carbon nanotubes, Polym. Test., 25, 221, 10.1016/j.polymertesting.2005.10.005
Ayatollahi, 2011, Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions, Mater. Des., 32, 2115, 10.1016/j.matdes.2010.11.034
Salvetat, 1999, Elastic and Shear Moduli Of single-walled carbon nanotube Ropes, Phys. Rev. Lett., 82, 944, 10.1103/PhysRevLett.82.944
Srivastava, 2003, Nanomechanics of carbon nanotubes and composites, Appl. Mech. Rev., 56, 215, 10.1115/1.1538625
Buryachenko, 2005, Multi-scale mechanics of nanocomposites including interface: experimental and numerical investigation, Compos. Sci. Technol., 65, 2435, 10.1016/j.compscitech.2005.08.005
Thostenson, 2001, Advances in the science and technology of carbon nanotubes and their composites: a review, Compos. Sci. Technol., 61, 1899, 10.1016/S0266-3538(01)00094-X
Tchmutin, 2003, Electrical properties of composites based on conjugated polymers and conductive fillers, Carbon, 41, 1391, 10.1016/S0008-6223(03)00067-8
Thostenson, 2009, Processing and electrical properties of carbon nanotube/vinyl ester nanocomposites, Composites Sci. Technol., 69, 801, 10.1016/j.compscitech.2008.06.023
Gojny, 2006, Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites, Polymer, 47, 2036, 10.1016/j.polymer.2006.01.029
Gryshchuk, 2006, Multiwall Carbon Nanotube Modified Vinylester and vinylester based hybrid resins, Composites Part A: Appl. Sci. Manufacturing, 37, 1252, 10.1016/j.compositesa.2005.09.003
Bauhofer, 2009, A review and analysis of electrical percolation in carbon nanotube polymer composites, Composites Sci. Technol., 69, 1486, 10.1016/j.compscitech.2008.06.018
Wu, 2010, Relations between the aspect ratio of carbon nanotubes and the formation of percolation networks in biodegradable polylactide/carbon nanotube composites, J. Polym. Sci. Part B. Polym. Phys., 48, 479, 10.1002/polb.21909
Zhang, 2008, The effect of carbon nanotube dimensions and dispersion on the fatigue behavior of epoxy nanocomposites, Nanotechnology, 19, 285709, 10.1088/0957-4484/19/28/285709
Zhang, 2007, Impact behaviour of polypropylene filled with multi-walled carbon nanotubes, Eur. Polym. J., 43, 3197, 10.1016/j.eurpolymj.2007.05.010
Dubnikova, 2010, The effect of multiwalled carbon nanotube dimensions on the morphology, mechanical, and electrical properties of melt mixed polypropylene-based composites, J. Appl. Polym. Sci., 10.1002/app.31979
Kotsilkova, 2004, Rheological, Electrical, and Microwave Properties Of polymers with Nanosized carbon particles, J. Appl. Polym. Sci., 92, 2220, 10.1002/app.20240
Balberg, 1984, Excluded volume and its relation to the onset of percolation, Phys. Rev. B., 30, 3933, 10.1103/PhysRevB.30.3933
Manoharan, 2009, The interfacial strength of carbon nanofiber epoxy composite using single fiber pullout experiments, Nanotechnology, 20, 295701, 10.1088/0957-4484/20/29/295701
Barber, 2004, Interfacial fracture energy measurements for multi-walled carbon nanotubes pulled from a polymer matrix, Compos. Sci. Technol., 64, 2283, 10.1016/j.compscitech.2004.01.023
Qian, 2000, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites, Appl. Phys. Lett., 76, 2868, 10.1063/1.126500
Forgacs, 1959, Particle motions in sheared suspensions. IX. Spin and deformation of threadlike particles, J. Colloid Sci., 14, 457, 10.1016/0095-8522(59)90012-1
Yeh, 2006, Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes, Carbon, 44, 1, 10.1016/j.carbon.2005.07.005