Effect of multi-walled carbon nanotube addition on the microstructures and mechanical properties of Ti(C,N)-based cermets

Journal of Advanced Ceramics - Tập 7 Số 1 - Trang 58-63 - 2018
Peng Wu1, S. C. Liu1, Xiu-Rong Jiang1
1College of Chemistry and Materials Science, Longyan University, Longyan, 364000, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Moskowitz D, Terner LL. TiN improves properties of titanium carbonitride-base materials. Int J Refract Met H 1986, 5: 13.

Ajayan PM, Schadler LS, Giannaris C, et al. Single-walled carbon nanotube–polymer composites: Strength and weakness. Adv Mater 2000, 12: 750–753.

Xie X-L, Mai Y-W, Zhou X-P. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mat Sci Eng R 2005, 49: 89–112.

Zhou S, Zhang X, Ding Z, et al. Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Composites Part A 2007, 38: 301–306.

Feng Y, Yuan HL, Zhang M. Fabrication and properties of silver-matrix composites reinforced by carbon nanotubes. Mater Charact 2005, 55: 211–218.

Zhan G-D, Kuntz JD, Wan J, et al. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2003, 2: 38–42.

Wang X, Padture NP, Tanaka H. Contact-damage-resistant ceramic/single-wall carbon nanotubes and ceramic/graphite composites. Nat Mater 2004, 3: 539–544.

Duszová A, Dusza J, Tomášek K, et al. Microstructure and properties of carbon nanotube/zirconia composite. J Eur Ceram Soc 2008, 28: 1023–1027.

Ruoff RS, Lorents DC. Mechanical and thermal properties of carbon nanotubes. Carbon 1995, 33: 925–930.

Iijima S. Helical microtubules of graphitic carbon. Nature 1991, 354: 56–58.

Dalmas F, Chazeau L, Gauthier C, et al. Multiwalled carbon nanotube/polymer nanocomposites: Processing and properties. J Polym Sci Pol Phys 2005, 43: 1186–1197.

Bahr JL, Yang J, Kosynkin DV, et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J Am Chem Soc 2001, 123: 6536–6542.

O’Connell MJ, Boul P, Ericson LM, et al. Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 2001, 342: 265–271.

Kónya Z, Vesselenyi I, Niesz K, et al. Large scale production of short functionalized carbon nanotubes. Chem Phys Lett 2002, 360: 429–435.

Holländer A, Thome J, Keusgen M, et al. Polymer surface chemistry for biologically active materials. Appl Surf Sci 2004, 235: 145–150.

He P, Wang SD, Wong WK, et al. Vibrational analysis of oxygen-plasma treated indium tin oxide. Chem Phys Lett 2003, 370: 795–798.

He W, Guo Z, Pu Y, et al. Polymer coating on the surface of zirconia nanoparticles by inductively coupled plasma polymerization. Appl Phys Lett 2004, 85: 896–898.

Flashaut E, Peigney A, Laurent Ch, et al. Carbon nanotube–metal–oxide nanocomposites: Microstructure, electrical conductivity and mechanical proporities. Acta Mater 2000, 48: 3803–3812.

Bhaumik SK, Upadhyaya GS, Vaidya ML. Full density processing of complex WC-based cemented carbides. J Mater Process Tech 1996, 58: 45–52.

Shetty DK, Wright IG, Mincer PN, et al. Indentation fracture of WC–Co cermets. J Mater Sci 1985, 20: 1873–1882.

Xu T, Yang J, Liu J, et al. Surface modification of multi-walled carbon nanotubes by O2 plasma. Appl Surf Sci 2007, 253: 8945–8951.

Zhang F, Shen J, Sun J. Processing and properties of carbon nanotubes nano-WC–Co composites. Mat Sci Eng A 2004, 381: 86–91.

Zheng Y, Liu W, Wang S, et al. Effect of carbon content on the microstructure and mechanical properties of Ti(C,N)-based cermets. Ceram Int 2004, 30: 2111–2115.