Effect of mono-dopants (Mg2+) and co-dopants (Mg2+, Zr4+) on the dielectric, ferroelectric and optical properties of BaTiO3 ceramics
Tóm tắt
In this work, BaTiO3, Ba(Mg0.01Ti0.99)O3, Ba(Mg0.015Ti0.985)O3, Ba(Mg0.02Ti0.98)O3 and Ba(Mg0.01Zr0.15Ti0.84)O3 ceramics have been prepared through conventional solid-state route to investigate the effects of Mg2+ and Zr4+ dopants as mono-substitution (only Mg2+) and co-substitution (Mg2+ and Zr4+) of B-site on the structural, electrical and optical properties of BaTiO3 ceramics. Exhibiting perovskite structure, Ba(Mg
Từ khóa
Tài liệu tham khảo
Ciomaga, 2007, Preparation and characterisation of the Ba(Zr,Ti)O3 ceramics with relaxor properties, J. Eur. Ceram. Soc., 27, 4061, 10.1016/j.jeurceramsoc.2007.02.095
Sadhana, 2008, Microwave sintering of nanobarium titanate, Scr. Mater., 59, 495, 10.1016/j.scriptamat.2008.04.036
Paper, 2003, Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives soldering tags internal electrodes dielectric material end terminal, Appl. Phys., 42, 1, 10.1143/JJAP.42.1
Jeong, 2004, Effects of MgO-doping on electrical properties and microstructure of BaTiO3, Japanese J Appl Physics, Part 1 Regul Pap Short Notes Rev Pap, 43, 5373, 10.1143/JJAP.43.5373
Umeda, 2012, Theoretical analysis of oxygen vacancy formation in Zr-Doped BaTiO3, Jpn. J. Appl. Phys., 51, 0, 10.1143/JJAP.51.09LE01
Vink, 1956, Relations between the concentrations of imperfections in crystalline solids, Solid State Phys., 3, 307, 10.1016/S0081-1947(08)60135-6
Li, 2014, Decisive role of MgO addition in the ultra-broad temperature stability of multicomponent BaTiO3-based ceramics, Ceram. Int., 40, 1105, 10.1016/j.ceramint.2013.06.110
Huang, 2015, Microstructure effect on dielectric properties of MgO-doped BaTiO3-BiYO3 ceramics, Ceram. Int., 41, 7489, 10.1016/j.ceramint.2015.02.070
Yoon, 2007, Effect of acceptor (Mg) concentration on the electrical resistance at room and high (200 °C) temperatures of acceptor (Mg)-doped BaTiO3 ceramics, Mater Sci Technol Conf Exhib MS T’07 - ‘Exploring Struct Process Appl Across Mult Mater Syst, 2, 723, 10.1063/1.2777119
Yu, 2002, Piezoelectric and strain properties of Ba(Ti 1-xZr x)O3 ceramics, J. Appl. Phys., 92, 1489, 10.1063/1.1487435
Yu, 2002, Ferroelectric-relaxor behavior of Ba(Ti 0.7Zr 0.3) O3 ceramics, J. Appl. Phys., 92, 2655, 10.1063/1.1495069
Amarande, 2017, Intrinsic and extrinsic effects near orthorhombic-tetragonal phase transition in barium titanate ceramics doped with small amounts of zirconium, Ceram. Int., 43, 4919, 10.1016/j.ceramint.2016.12.143
Ravez, 1999, Lead-free ferroelectric relaxor ceramics in the BaTiO3-BaZrO3-CaTiO3 system, J. Mater. Chem., 9, 1609, 10.1039/a902335f
Cai, 2011, Dielectric properties and microstructure of Mg doped barium titanate ceramics, Adv Appl Ceram, 110, 181, 10.1179/1743676110Y.0000000019
Wang, 2014, Microstructure and dielectric properties of BaTiO3ceramic doped with yttrium, magnesium, gallium and silicon for AC capacitor application, Mater. Res. Bull., 60, 485, 10.1016/j.materresbull.2014.09.023
Cavalcante, 2007, Combined experimental and theoretical investigations of the photoluminescent behavior of Ba(Ti, Zr)O3 thin films, Acta Mater., 55, 6416, 10.1016/j.actamat.2007.07.049
Badapanda, 2011, Rietveld refinement, microstructure, conductivity and impedance properties of Ba[Zr0.25Ti0.75]O3 ceramic, Curr. Appl. Phys., 11, 1282, 10.1016/j.cap.2011.03.056
Sharma, 2015, Structural and dielectric properties of substituted barium titanate ceramics for capacitor applications, Ceram. Int., 41, 13425, 10.1016/j.ceramint.2015.07.131
Czekaj, 2009, Fabrication and dielectric properties of donor doped BaTiO3 ceramics, Arch. Metall. Mater., 54, 923, 10.1080/00150193.2011.578988
Sangwan, 2018, Improved dielectric and ferroelectric properties of Mn doped barium zirconium titanate (BZT) ceramics for energy storage applications, J. Phys. Chem. Solids, 117, 158, 10.1016/j.jpcs.2018.01.051
Alexander, 1950, Determination of crystallite size with the x-ray spectrometer, J. Appl. Phys., 21, 137, 10.1063/1.1699612
Shannon, 1976, Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides bond strength-bond length relationships , and plots of (1) radii vs volume, (2) radii vs coordination partial occupancy of cation sites, coval, Acta Crystallogr., A32, 751, 10.1107/S0567739476001551
Travis, 2016, On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system, Chem. Sci., 7, 4548, 10.1039/C5SC04845A
Ahad, 2019, Effect of Y substitution on magnetic and transport properties of Ba0.95La0.05Ti1−xYxO3 ceramics, Results Phys, 12, 1925, 10.1016/j.rinp.2019.01.072
Sukkha, 2014, Phase transition behavior of Ba(Mg1/3Nb2/3)O3 modified PbZrO3 solid solution, J. Mater. Chem. C, 2, 2929, 10.1039/c3tc32353f
Mahata, 2015, Incorporation of Zn2+ ions into BaTiO3:Er3+/Yb3 + nanophosphor: an effective way to enhance upconversion, defect luminescence and temperature sensing, Phys. Chem. Chem. Phys., 17, 20741, 10.1039/C5CP01874A
Khanfekr, 2014, Investigation on structure of BaTi1-xNbxO3 compound prepared by rotary-hydrothermal synthesis methods, Mater Sci Pol, 32, 430, 10.2478/s13536-014-0222-0
Wurst, 1972, Two-phase polycrystalline ceramics, J. Am. Ceram. Soc., 1972, 46, 10.1111/j.1151-2916.1972.tb11224.x
Zhang, 2011, MgO doping effects on dielectric properties of Ba0.55Sr 0.45TiO3 ceramics, J. Am. Ceram. Soc., 94, 3883, 10.1111/j.1551-2916.2011.04577.x
Deluca, 2012, Investigation of the composition-dependent properties of BaTi 1-xZr xO3 ceramics prepared by the modified Pechini method, J. Eur. Ceram. Soc., 32, 3551, 10.1016/j.jeurceramsoc.2012.05.007
Singh, 2011, Preparation and Characterization of Nanostructured CaCu 2.90 Zn 0.10 Ti4O 12 Ceramic, Nanomater Nanotechnol, 1, 20, 10.5772/10687
Choudhury, 2008, Structural, dielectric and electrical properties of zirconium doped barium titanate perovskite, J. Bangladesh Acad. Sci., 32, 221, 10.3329/jbas.v32i2.2434
Mostafa, 2017, Enhanced dielectric properties of BaTiO3 ceramics with cerium doping, manganese doping and Ce-Mn co-doping, Sci Eng Compos Mater, 26, 62, 10.1515/secm-2017-0177
Cha, 2006, Effects of oxygen vacancies on relaxation behavior of Mg-doped BaTiO3, Japanese J Appl Physics, Part 1 Regul Pap Short Notes Rev Pap, 45, 7797, 10.1143/JJAP.45.7797
Jadhav, 2012, Studies on the properties of Ni 0.6Cu 0.4Mn 2O4 NTC ceramic due to Fe doping, Ceram. Int., 38, 5181, 10.1016/j.ceramint.2012.03.024
Oksuz, 2017, Influence of ZrO2 addition on the structure and dielectric properties of BaTiO3 ceramics, Acta Phys. Pol. A, 131, 197, 10.12693/APhysPolA.131.197
Al-hilli, 2018, Structural and dielectric properties of Zr doped BaTiO3 synthesized by microwave assisted chemical route, Iraqi J. Sci., 59, 96, 10.24996/ijs.2018.59.1A.12
Badapanda, 2009, Optical and dielectric relaxor behaviour of Ba(Zr0.25Ti 0.75)O3 ceramic explained by means of distorted clusters, J. Phys. D: Appl. Phys., 42, 1, 10.1088/0022-3727/42/17/175414
Longo, 2008, Strong violet-blue light photoluminescence emission at room temperature in SrZrO3: Joint experimental and theoretical study, Acta Mater., 56, 2191, 10.1016/j.actamat.2007.12.059
Garbovskiy, 2013, Optical/ferroelectric characterization of BaTiO3 and PbTiO3 colloidal nanoparticles and their applications in hybrid materials technologies, Appl. Opt., 52, 0, 10.1364/AO.52.000E34
Sengodan, 2014, Structure, surface morphology and optical properties of BaTiO3 powders prepared by wet chemical method, Indian J. Pure Appl. Phys., 52, 839
Wu, 2017, Controllable synthesis of p-type Cu2S nanowires for self-driven NIR photodetector application, J Nanoparticle Res;, 19, 35, 10.1007/s11051-016-3736-z
Paquin, 2015, Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors, J. Mater. Chem. C, 3, 10715, 10.1039/C5TC02043C
Stojanovic, 2005, Mechanochemical synthesis of barium titanate, J. Eur. Ceram. Soc., 25, 1985, 10.1016/j.jeurceramsoc.2005.03.003
Zak, 2011, Effect of solvent on structure and optical properties of PZT nanoparticles prepared by sol-gel method, in infrared region, Ceram. Int., 37, 753, 10.1016/j.ceramint.2010.10.020