Effect of modified graphite nanoflakes on curing, mechanical and dielectric properties of nitrile rubber nanocomposites
Tóm tắt
Từ khóa
Tài liệu tham khảo
Sadek E, El-Nashar D, Ward A, Ahmed S (2018) Study on the properties of multi-walled carbon nanotubes reinforced poly (vinyl alcohol) composites. J Polym Res 25:1–13. https://doi.org/10.1007/s10965-018-1641-0
Sadek E, El-nashar D, Ahmed S (2018) Influence of modifying agents of organoclay on the properties of nanocomposites based on acrylonitrile butadiene rubber. Egypt J Pet 27:1177–1185. https://doi.org/10.1016/j.ejpe.2018.04.007
Prasanna SRVS, Balaji K, Pandey S, Rana S (2019) Metal oxide based nanomaterials and their polymer nanocomposites. Nanomater Polym Nanocompos. https://doi.org/10.1016/B978-0-12-814615-6.00004-7
Rane V, Kanny K, Abitha VK, Thomas S (2018) Methods for synthesis of nanoparticles and fabrication of nanocomposites. Synth Inorg Nanomater. https://doi.org/10.1016/B978-0-08-101975-7.00005-1
Jojibabu P, Zhang Y, Rider AN, Wang J, Wuhrer R, Prusty BG (2020) High-performance epoxy-based adhesives modified with functionalized graphene nanoplatelets and triblock copolymers. Int J Adhes Adhes 98:102521–102532. https://doi.org/10.1016/j.ijadhadh.2019.102521
Wang L, Zhang L, Tian M (2012) Effect of expanded graphite (EG) dispersion on the mechanical and tribological properties of nitrile rubber/EG composites. Wear 276–277:85–93. https://doi.org/10.1016/j.wear.2011.12.009
Zhong B, Luo Y, Chen LY, Hu D, Dong H, Jia Z, Jia D (2019) Immobilization of rubber additive on graphene for high-performance rubber composites. J Colloid Interface Sci 550:190–198. https://doi.org/10.1016/j.jcis.2019.05.006
Mondal T, Bhowmick A, Ghosal R, Mukhopadhyay R (2018) Expanded graphite as an agent towards controlling the dispersion of carbon black in poly (styrene-co-butadiene) matrix: an effective strategy towards the development of high-performance multifunctional composite. Polymer 146:31–41. https://doi.org/10.1016/j.polymer.2018.05.031
Guezzout Z, Doufnoune R, Haddaou N (2017) Effect of graphene oxide on the properties of compatibilized polypropylene/ethylene-propylene-rubber blend. J Polym Res 24:129–134. https://doi.org/10.1007/s10965-017-1291-7
Mensah B, Gupta K, Kim H, Wang W, Jeong K, Nah C (2018) Graphene-reinforced elastomeric nanocomposites: a review. Polym Test J 68:160–184. https://doi.org/10.1016/j.polymertesting.2018.04.009
Chavan S, Gumtapure V, Perumal D (2020) Numerical and experimental analysis on thermal energy storage of polyethylene/functionalized graphene composite phase change materials. J Energy Storage 27:101045–101055. https://doi.org/10.1016/j.est.2019.101045
Mostovoy A, Yakovlev A (2019) Reinforcement of epoxy composites with graphite graphene structures. Sci Rep 9:16246–16254. https://doi.org/10.1038/s41598-019-52751-z
Alshammari B, Al-Mubaddel F, Karim M, Hossain M, Al-Mutairi A, Wilkinson A (2019) Addition of graphite filler to enhance electrical, morphological, thermal, and mechanical properties in poly (ethylene terephthalate): experimental characterization and material modeling. Polymers 11:1411–1430. https://doi.org/10.3390/polym11091411
Rzeczkowski P, Krause B, Pötschke P (2019) Characterization of highly filled PP/graphite composites for adhesive joining in fuel cell applications. Polymers 11:462–476. https://doi.org/10.3390/polym11030462
Bokobza L (2017) Mechanical and electrical properties of elastomer nanocomposites based on different carbon nanomaterials. J Carbon Res 3(10):1–22. https://doi.org/10.3390/c3020010
Gu W, Zhang W, Li X, Zhu H, Wei J, Li Z, Shu Q, Wang C, Wang K, Shen W, Kang F, Wu D (2009) Graphene sheets from worm-like exfoliated graphite. J Mater Chem 19:3367–3369. https://doi.org/10.1039/b904093p
Nair A, Kurian P, Joseph R (2013) Effect of expanded graphite on thermal, mechanical and dielectric properties of ethylene–propylene–diene terpolymer/hexa fluoropropylene–vinylidinefluoride dipolymer rubber blends. Eur Polym J 49:247–260. https://doi.org/10.1016/j.eurpolymj.2012.08.014
Malas A, Das C (2017) Influence of modified graphite flakes on the physical, thermomechanical and barrier properties of butyl rubber. J Alloy Compd 699:38–46. https://doi.org/10.1016/j.jallcom.2016.12.232
Zirnstein B, Tabaka W, Frasca D, Schulze D, Schartel B (2018) Graphene / hydrogenated acrylonitrile-butadiene rubber nanocomposites: Dispersion, curing, mechanical reinforcement, multifunctional filler. PolymTest J 66:268–279. https://doi.org/10.1016/j.polymertesting.2018.01.035
Xue X, Yin Q, Jia H, Zhang X, Wena Y, Ji Q, Xu Z (2017) Enhancing mechanical and thermal properties of styrene-butadiene rubber/carboxylated acrylonitrile butadiene rubber blend by the usage of graphene oxide with diverse oxidation degrees. Appl Surf Sci 423:584–591. https://doi.org/10.1016/j.apsusc.2017.06.200
Thomas B, Maria H, George G, Thomas S, Unnikrishnan N, Joseph K (2019) A novel green approach for the preparation of high performance nitrile butadiene rubber-pristine graphene nanocomposites. Compos B 175:107174–107181. https://doi.org/10.1016/j.compositesb.2019.107174
Liu Z, Qian Z, Song J, Zhang Y (2019) Conducting and stretchable composites using sandwiched graphene carbon nanotube hybrids and styrene-butadiene rubber. Carbon 149:181–189. https://doi.org/10.1016/j.carbon.2019.04.037
Zheng L, Wang D, Xu Z, Zhang L, Liu L, Wen S (2019) High barrier properties against sulfur mustard of graphene oxide/butyl rubber composites. Compos Sci Technol 170:141–147. https://doi.org/10.1016/j.compscitech.2018.12.002
Wang G, Liao X, Yang J, Tang W, Zhang Y, Jiang Q, Li G (2019) Frequency-selective and tunable electromagnetic shielding effectiveness via the sandwich structure of silicone rubber/graphene composite. Compos Sci Technol 184:107847–107855. https://doi.org/10.1016/j.compscitech.2019.107847
Hu H, Gao Q, Tian G, Hong S, Zhao J, Zhao Y (2018) The influence of topology and morphology of fillers on the conductivity and mechanical properties of rubber composites. J Polym Res 25:87–96. https://doi.org/10.1007/s10965-018-1478-6
Ravikumar K, Palanivelu K, Ravichandran K (2019) Dielectric properties of natural rubber composites filled with graphite. Mater Today Proc 16:1338–1343. https://doi.org/10.1016/j.matpr.2019.05.233
Maya M, George S, Jose T, Kailas L, Thomas S (2018) Development of a flexible and conductive elastomeric composite based on chloroprene rubber. Polym Test J 65:256–263. https://doi.org/10.1016/j.polymertesting.2017.12.006
Liang A, Jiang X, Hong X, Jiang Y, Shao Z, Zhu D (2018) Recent developments concerning the dispersion methods and mechanisms of graphene. Coatings. https://doi.org/10.3390/coatings8010033
Smith R, Lotya M, Coleman J (2010) The importance of repulsive potential barriers for the dispersion of graphene using surfactants. New J Phys 12:125008–125018. https://doi.org/10.1088/1367-2630/12/12/125008
Promchim J, Kanking S, Niltui P, Wimolmala E, Sombatsompop N (2016) Swelling and mechanical properties of (acrylonitrile-butadiene rubber)/ (hydrogenated acrylonitrile-butadiene rubber) blends with precipitated silica filled in gasohol fuels. J Vinyl Addit Technol 22:239–246. https://doi.org/10.1002/vnl.21417
Burelo M, Martínez A, Cruz-Morales JA, Tlenkopatchev MA, Gutiérrez S (2019) Metathesis reaction from bio-based resources: synthesis of diols and macrodiols using fatty alcohols, β-citronellol and natural rubber. Polym Degrad Stab 166:202–212. https://doi.org/10.1016/j.polymdegradstab.2019.05.021
Martínez A, Tlenkopatchev MA, Gutiérrez S, Burelo M, Vargas J, Jiménez-Regalado E (2019) Synthesis of unsaturated esters by cross-metathesis of terpenes and natural rubber using Ru-alkylidene catalysts. Curr Org Chem 23(12):1354–1362. https://doi.org/10.2174/1385272823666190723125427
Robert A (1990) Natural rubber science and technology. Oxford Sci Publ. https://doi.org/10.1002/pi.4980210421
Sadek E, El-Nashar D, Ahmed S (2015) Effect of organoclay reinforcement on the curing characteristics and technological properties of styrene–butadiene rubber. Polym Compos 36(7):1293–1302. https://doi.org/10.1002/pc.23034
Liu D, Du X, Meng Y (2005) Preparation of NBR/expanded graphite nanocomposites by simple mixing. Polym Polym Compos 13(8):815–821. https://doi.org/10.1177/2F096739110501300807
Reffaee A, El-Nashar D, Abd-El-Messieh S, Abd-El Nour K (2009) Electrical and mechanical properties of acrylonitrile rubber and linear low density polyethylene composites in the vicinity of the percolation threshold. Mater Des 30:3760–3769. https://doi.org/10.1016/j.matdes.2009.02.001
Pang H, Xu L, Yan D, Li Z (2014) Conductive polymer composites with segregated Structures. Prog Polym Sci 39:1908–1933. https://doi.org/10.1016/j.progpolymsci.2014.07.007
Mutlay I, Tudoran L (2014) Percolation behavior of electrically conductive graphene nanoplatelets/polymer 11 nanocomposites: theory and experiment. Fullerenes, Nanotubes, Carbon Nanostruct 22:413–433. https://doi.org/10.1080/1536383X.2012.684186
Wang P, Chong H, Zhang J, Yang Y, Lu H (2018) Ultralow electrical percolation in melt-compounded polymer composites based on chemically expanded graphite. Compos Sci Technol 158:147–155. https://doi.org/10.1016/j.compscitech.2018.01.022