Effect of modified graphite nanoflakes on curing, mechanical and dielectric properties of nitrile rubber nanocomposites

E. M. Sadek1, Sahar M. Ahmed2, D. E. El‐Nashar3, Nahla A. Mansour2
1Egyptian Petroleum Research Institute (EPRI)
2Petrochemical Department, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, Egypt
3Polymer and Pigment Department, National Research Centre (NRC), Dokki, Cairo, Egypt

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sadek E, El-Nashar D, Ward A, Ahmed S (2018) Study on the properties of multi-walled carbon nanotubes reinforced poly (vinyl alcohol) composites. J Polym Res 25:1–13. https://doi.org/10.1007/s10965-018-1641-0

Sadek E, El-nashar D, Ahmed S (2018) Influence of modifying agents of organoclay on the properties of nanocomposites based on acrylonitrile butadiene rubber. Egypt J Pet 27:1177–1185. https://doi.org/10.1016/j.ejpe.2018.04.007

Prasanna SRVS, Balaji K, Pandey S, Rana S (2019) Metal oxide based nanomaterials and their polymer nanocomposites. Nanomater Polym Nanocompos. https://doi.org/10.1016/B978-0-12-814615-6.00004-7

Rane V, Kanny K, Abitha VK, Thomas S (2018) Methods for synthesis of nanoparticles and fabrication of nanocomposites. Synth Inorg Nanomater. https://doi.org/10.1016/B978-0-08-101975-7.00005-1

Jojibabu P, Zhang Y, Rider AN, Wang J, Wuhrer R, Prusty BG (2020) High-performance epoxy-based adhesives modified with functionalized graphene nanoplatelets and triblock copolymers. Int J Adhes Adhes 98:102521–102532. https://doi.org/10.1016/j.ijadhadh.2019.102521

Wang L, Zhang L, Tian M (2012) Effect of expanded graphite (EG) dispersion on the mechanical and tribological properties of nitrile rubber/EG composites. Wear 276–277:85–93. https://doi.org/10.1016/j.wear.2011.12.009

Zhong B, Luo Y, Chen LY, Hu D, Dong H, Jia Z, Jia D (2019) Immobilization of rubber additive on graphene for high-performance rubber composites. J Colloid Interface Sci 550:190–198. https://doi.org/10.1016/j.jcis.2019.05.006

Mondal T, Bhowmick A, Ghosal R, Mukhopadhyay R (2018) Expanded graphite as an agent towards controlling the dispersion of carbon black in poly (styrene-co-butadiene) matrix: an effective strategy towards the development of high-performance multifunctional composite. Polymer 146:31–41. https://doi.org/10.1016/j.polymer.2018.05.031

Guezzout Z, Doufnoune R, Haddaou N (2017) Effect of graphene oxide on the properties of compatibilized polypropylene/ethylene-propylene-rubber blend. J Polym Res 24:129–134. https://doi.org/10.1007/s10965-017-1291-7

Mensah B, Gupta K, Kim H, Wang W, Jeong K, Nah C (2018) Graphene-reinforced elastomeric nanocomposites: a review. Polym Test J 68:160–184. https://doi.org/10.1016/j.polymertesting.2018.04.009

Chavan S, Gumtapure V, Perumal D (2020) Numerical and experimental analysis on thermal energy storage of polyethylene/functionalized graphene composite phase change materials. J Energy Storage 27:101045–101055. https://doi.org/10.1016/j.est.2019.101045

Mostovoy A, Yakovlev A (2019) Reinforcement of epoxy composites with graphite graphene structures. Sci Rep 9:16246–16254. https://doi.org/10.1038/s41598-019-52751-z

Alshammari B, Al-Mubaddel F, Karim M, Hossain M, Al-Mutairi A, Wilkinson A (2019) Addition of graphite filler to enhance electrical, morphological, thermal, and mechanical properties in poly (ethylene terephthalate): experimental characterization and material modeling. Polymers 11:1411–1430. https://doi.org/10.3390/polym11091411

Rzeczkowski P, Krause B, Pötschke P (2019) Characterization of highly filled PP/graphite composites for adhesive joining in fuel cell applications. Polymers 11:462–476. https://doi.org/10.3390/polym11030462

Bokobza L (2017) Mechanical and electrical properties of elastomer nanocomposites based on different carbon nanomaterials. J Carbon Res 3(10):1–22. https://doi.org/10.3390/c3020010

Gu W, Zhang W, Li X, Zhu H, Wei J, Li Z, Shu Q, Wang C, Wang K, Shen W, Kang F, Wu D (2009) Graphene sheets from worm-like exfoliated graphite. J Mater Chem 19:3367–3369. https://doi.org/10.1039/b904093p

Nair A, Kurian P, Joseph R (2013) Effect of expanded graphite on thermal, mechanical and dielectric properties of ethylene–propylene–diene terpolymer/hexa fluoropropylene–vinylidinefluoride dipolymer rubber blends. Eur Polym J 49:247–260. https://doi.org/10.1016/j.eurpolymj.2012.08.014

Malas A, Das C (2017) Influence of modified graphite flakes on the physical, thermomechanical and barrier properties of butyl rubber. J Alloy Compd 699:38–46. https://doi.org/10.1016/j.jallcom.2016.12.232

Zirnstein B, Tabaka W, Frasca D, Schulze D, Schartel B (2018) Graphene / hydrogenated acrylonitrile-butadiene rubber nanocomposites: Dispersion, curing, mechanical reinforcement, multifunctional filler. PolymTest J 66:268–279. https://doi.org/10.1016/j.polymertesting.2018.01.035

Xue X, Yin Q, Jia H, Zhang X, Wena Y, Ji Q, Xu Z (2017) Enhancing mechanical and thermal properties of styrene-butadiene rubber/carboxylated acrylonitrile butadiene rubber blend by the usage of graphene oxide with diverse oxidation degrees. Appl Surf Sci 423:584–591. https://doi.org/10.1016/j.apsusc.2017.06.200

Thomas B, Maria H, George G, Thomas S, Unnikrishnan N, Joseph K (2019) A novel green approach for the preparation of high performance nitrile butadiene rubber-pristine graphene nanocomposites. Compos B 175:107174–107181. https://doi.org/10.1016/j.compositesb.2019.107174

Liu Z, Qian Z, Song J, Zhang Y (2019) Conducting and stretchable composites using sandwiched graphene carbon nanotube hybrids and styrene-butadiene rubber. Carbon 149:181–189. https://doi.org/10.1016/j.carbon.2019.04.037

Zheng L, Wang D, Xu Z, Zhang L, Liu L, Wen S (2019) High barrier properties against sulfur mustard of graphene oxide/butyl rubber composites. Compos Sci Technol 170:141–147. https://doi.org/10.1016/j.compscitech.2018.12.002

Wang G, Liao X, Yang J, Tang W, Zhang Y, Jiang Q, Li G (2019) Frequency-selective and tunable electromagnetic shielding effectiveness via the sandwich structure of silicone rubber/graphene composite. Compos Sci Technol 184:107847–107855. https://doi.org/10.1016/j.compscitech.2019.107847

Hu H, Gao Q, Tian G, Hong S, Zhao J, Zhao Y (2018) The influence of topology and morphology of fillers on the conductivity and mechanical properties of rubber composites. J Polym Res 25:87–96. https://doi.org/10.1007/s10965-018-1478-6

Ravikumar K, Palanivelu K, Ravichandran K (2019) Dielectric properties of natural rubber composites filled with graphite. Mater Today Proc 16:1338–1343. https://doi.org/10.1016/j.matpr.2019.05.233

Maya M, George S, Jose T, Kailas L, Thomas S (2018) Development of a flexible and conductive elastomeric composite based on chloroprene rubber. Polym Test J 65:256–263. https://doi.org/10.1016/j.polymertesting.2017.12.006

Liang A, Jiang X, Hong X, Jiang Y, Shao Z, Zhu D (2018) Recent developments concerning the dispersion methods and mechanisms of graphene. Coatings. https://doi.org/10.3390/coatings8010033

Smith R, Lotya M, Coleman J (2010) The importance of repulsive potential barriers for the dispersion of graphene using surfactants. New J Phys 12:125008–125018. https://doi.org/10.1088/1367-2630/12/12/125008

Promchim J, Kanking S, Niltui P, Wimolmala E, Sombatsompop N (2016) Swelling and mechanical properties of (acrylonitrile-butadiene rubber)/ (hydrogenated acrylonitrile-butadiene rubber) blends with precipitated silica filled in gasohol fuels. J Vinyl Addit Technol 22:239–246. https://doi.org/10.1002/vnl.21417

Burelo M, Martínez A, Cruz-Morales JA, Tlenkopatchev MA, Gutiérrez S (2019) Metathesis reaction from bio-based resources: synthesis of diols and macrodiols using fatty alcohols, β-citronellol and natural rubber. Polym Degrad Stab 166:202–212. https://doi.org/10.1016/j.polymdegradstab.2019.05.021

Martínez A, Tlenkopatchev MA, Gutiérrez S, Burelo M, Vargas J, Jiménez-Regalado E (2019) Synthesis of unsaturated esters by cross-metathesis of terpenes and natural rubber using Ru-alkylidene catalysts. Curr Org Chem 23(12):1354–1362. https://doi.org/10.2174/1385272823666190723125427

Robert A (1990) Natural rubber science and technology. Oxford Sci Publ. https://doi.org/10.1002/pi.4980210421

Sadek E, El-Nashar D, Ahmed S (2015) Effect of organoclay reinforcement on the curing characteristics and technological properties of styrene–butadiene rubber. Polym Compos 36(7):1293–1302. https://doi.org/10.1002/pc.23034

Liu D, Du X, Meng Y (2005) Preparation of NBR/expanded graphite nanocomposites by simple mixing. Polym Polym Compos 13(8):815–821. https://doi.org/10.1177/2F096739110501300807

Reffaee A, El-Nashar D, Abd-El-Messieh S, Abd-El Nour K (2009) Electrical and mechanical properties of acrylonitrile rubber and linear low density polyethylene composites in the vicinity of the percolation threshold. Mater Des 30:3760–3769. https://doi.org/10.1016/j.matdes.2009.02.001

Pang H, Xu L, Yan D, Li Z (2014) Conductive polymer composites with segregated Structures. Prog Polym Sci 39:1908–1933. https://doi.org/10.1016/j.progpolymsci.2014.07.007

Mutlay I, Tudoran L (2014) Percolation behavior of electrically conductive graphene nanoplatelets/polymer 11 nanocomposites: theory and experiment. Fullerenes, Nanotubes, Carbon Nanostruct 22:413–433. https://doi.org/10.1080/1536383X.2012.684186

Wang P, Chong H, Zhang J, Yang Y, Lu H (2018) Ultralow electrical percolation in melt-compounded polymer composites based on chemically expanded graphite. Compos Sci Technol 158:147–155. https://doi.org/10.1016/j.compscitech.2018.01.022

Jan-Chan H (2002) Carbon black filled conducting polymers and polymer blends. Adv Polym Technol 21:299–313. https://doi.org/10.1002/adv.10025