Effect of mercaptoethanol and Na2S dropwise addition rate on zinc sulfide semiconductor nanocrystals: synthesis and characterization

Journal of Nanostructure in Chemistry - Tập 3 - Trang 1-5 - 2013
Abbas Rahdar1
1Department of Physics, Faculty of Science, University of Zabol, Zabol, Iran

Tóm tắt

Zinc sulfide (ZnS) semiconductor nanocrystals with mercaptoethanol (ME) as a stabilizer (capping agent) were synthesized by coprecipitation method in room temperature using the solution of zinc chloride (ZnCl2) and sodium sulfide (Na2S) as starting material. The effect of ME and Na2S dropwise addition rate on the preparation of these samples was measured using UV–vis absorption and X-ray diffraction (XRD). The ultraviolet–visible (UV–vis) absorption and XRD of the prepared ZnS nanoparticles show increase of band gap and decrease of particle size with decrease in ME and Na2S dropwise addition rate to the reaction medium. This behavior is related to the size quantization effect due to the small size of the particles. The photoluminescence emission peak positions exhibit obvious blue shift from 510 to 455 nm. The particle sizes were obtained from transmission electron microscopy images.

Tài liệu tham khảo

Henglein A: Small-particle research: physico-chemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 1989, 89: 1861–1873. Steigerwald ML, Brus LE: Semiconductor crystallites: a class of large molecules. Acc. Chem. Res. 1990, 23: 183–188. Bawendi MG, Steigerwald ML, Brus LE: The quantum-mechanics of larger semiconductor clusters (quantum dots). Annu. Rev. Phys. Chem. 1990, 41: 477–496. Wang Y, Herron N: Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photo physical properties. J. Phys. Chem. 1991, 95: 525–532. Weller H: Quantized semiconductor particles: a novel state of matter for materials science. Adv. Mater. 1993, 5: 88–95. Alivisatos AP: Semiconductor clusters, nano crystals, and quantum dots. Science 1996, 271: 933–937. Eychmüller A: Structure and photo physics of semi conductor nano crystals. J. Phys. Chem. B 2000, 104: 6514–6528. van Dijken A, Janssen AH, Smitsmans MHP, Vanmaekelbergh D, Meijerink A: Size-selective photo etching of nano crystalline semiconductor particles. Chem. Mater. 1998, 10: 3513–3522. Xu JF, Ji W, Lin JY, Tang SH, Du YW: Preparation of ZnS nanoparticles by ultrasonic radiation method. Appl Phys A 1998, 66: 639–641. Dinsmore AD, Hsu DS, Qadri SB, Cross JO, Kennedy TA, Gray HF, Ratna BR: Structure and luminescence of annealed nanoparticles of ZnS:Mn. J. Appl. Phys. 2000, 88: 4985. Que W, Zhou Y, Lam YL, Chan YC, Kam CH, Liu B, Gan LM, Chew CH, Xu GQ, Chua SJ, Xu SJ, Mendis FVC: Structural and luminescence properties of nanostructured ZnS:Mn. Appl. Phys. Lett. 1998, 73: 2727–2729. Huang J, Yang Y, Xue S, Yang B, Liu S, Shen J: All-inorganic light emitting device based on ZnO nanoparticles. Appl. Phys. Lett. 1997, 70: 2335–2337. Shao LX, Chang Q, Hwang HL: Zinc sulfide thin films deposited by RF reactive sputtering for photovoltaic applications. Appl. Surf. Sci. 2003, 212: 305–310. Habib Ullah M, Il K, Ha CS: pH selective synthesis of ZnS nanocrystals and their growth and photoluminescence. Mater. Lett. 2007, 61: 4267–4271. Chestnoy N, Hull R, Brus LE: Higher excited electronic states in clusters of ZnSe, CdSe, and ZnS: spin‒orbit, vibronic, and relaxation phenomena. J. Chem. Phys. 1996, 85: 2237–2242. Lee SM, Hwang CS: Synthesis of a white-light-emitting ZnSe:Mn nanocrystal via thermal decomposition reaction of organometallic precursors. Bull Korean Chem Soc 2013, 34: 321–324. Brus LE: Electron–electron and electron‒hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80: 4403. Wang Y, Herron N: Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photo physical properties. J. Phys. Chem. 1987, 91: 257. Awschalom DD, Kikkawa JM: Electron spin and optical coherence in semiconductors. Phys. Today 1999, 52: 33. Wang X, Ding Y, Summers CJ, Wang ZL: Large-scale synthesis of six-nanometer-wide ZnO nanobelts. J. Phys. Chem. B 2004, 108: 8773–8777. Narayanaswamy A, Xu HF, Pradhan N, Kim M, Peng X: Synthesis of urea capped ZnS nanoparticles. J. Am. Chem. Soc. 2006, 128: 10310. Khosravi AA, Kundu M, Jatwa L, Deshpande SK, Bhagwat UA, Sastry M, Kulkarni SK: Green luminescence from copper doped zinc sulphide quantum particles. Appl. Phys. Lett. 1995, 67: 2702–2704. Li Y, Meng GW, Zhang LD, Phillipp F: Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties. Appl. Phys. Lett. 2000, 76: 2011–2013. Zhang YS, Wang LS, Liu XH, Yan YJ, Chen CQ, Zhu J: Effect of surface stress on the stiffness of micro/nanocantilevers: nanowire elastic modulus measured by nano-scale tensile and vibrational techniques. J. Phys. Chem. B 2005, 109: 13091. Ibanga EJ, Le Luyer C, Mugnier J: Zinc oxide waveguide produced by thermal oxidation of chemical bath deposited zinc sulphide thin films. Matter Chem Phys 2003, 80: 490. Archana J, Navaneethan M, Ponnusamy S, Hayakawa Y, Muthamizhchelvan C: Optical, structural and surface morphological studies of bean-like triethylamine capped zinc selenide nanostructures. Mat Lett 2009, 63: 1931. Kumar A, Biebuyck HA, Whitesides GM: Patterning self-assembled monolayers: applications in materials science. Langmuir 1994, 10: 1498. Vossmeyer T, Katsikas L, Giersig M, Popovic IG, Diesner K, Chemseddine A, Eychmuller A, Weller H: CdS nano clusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift. J. Phys. Chem. 1994, 98: 7665. Murray CB, Norris DB, Bawendi MG: Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115: 8706. Patterson A: The Scherrer formula for X-ray particle size determination. Phys. Rev. 1939, 56: 978–982. http://link.aps.org/doi/10.1103/PhysRev.56.978 10.1103/PhysRev.56.978 Sharma R, Chandra BP, Bisen DP: Optical properties of ZnS:Mn nanoparticles prepared by chemical routs. Chalcgenide Letters 2009, 6: 339–342. Bawendi MG, Steigerwald ML, Brus LE: The quantum mechanics of larger semiconductor cluster. Rev Phys Chem 1990, 41: 477–496. Landolt-Bornstein: Numerical data and functional relationships in science and technology. Berlin: Springer Verlag; 1987:168. Hartley PA, Parfitt GD, Pollack LB: The role of the van der Waals force in the agglomeration of powders containing submicron particles. Power Tech. 1985, 42: 35–46. Rema Devi BS, Raveendran R, Vaidyan AV: Synthesis and characterization of Mn2+-doped ZnS nanoparticles. Pramana-J. Phys. 2007, 68: 679–687. Rahdar A: Effect of 2-mercaptoethanol as capping agent on ZnS nanoparticles: structural and optical characterization. J. Nano. Chem. 2013, 3: 1–5. Wang Y, Herron N: Quantum size effects on the exciton energy of CdS clusters. Physical Review B 1990, 42: 7253–7255.