Effect of maize processing methods on the retention of minerals, phytic acid and amino acids when using high kernel-zinc maize

Current Research in Food Science - Tập 4 - Trang 279-286 - 2021
Sonia Gallego-Castillo1, Victor Taleon2, Elise F. Talsma3, Aldo Rosales-Nolasco4, Natalia Palacios-Rojas4
1HarvestPlus, c/o The Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, A.A, 6713, Cali, Colombia
2HarvestPlus, c/o International Food Policy Research Institute (IFPRI), 1201 Eye Street, NW, Washington, DC, 20005, USA
3Division of Human Nutrition and Health, Wageningen University and Research, P.O. Box 17, 6700, AA, Wageningen, the Netherlands
4International Maize and Wheat Improvement Center (CIMMYT), Km. 45 Carretera Mexico-Veracruz, El Batan, Texcoco, 56130, 00174, Mexico

Tài liệu tham khảo

Atlin, 2011, Quality protein maize: progress and prospects, Plant Breed. Rev., 34, 83, 10.1002/9780470880579.ch3 Bauman, 1975, Germ and endosperm variability, mineral elements, oil content, and modifier genes in opaque-2 maize, 217 Bevis, 2020, Variation in crop zinc concentration influences estimates of dietary Zn inadequacy, PloS One, 15, 10.1371/journal.pone.0234770 Bouis, 2017, Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016, Global Food Security, 12, 49, 10.1016/j.gfs.2017.01.009 Bressani, 1990, Changes in selected nutrient contents and in protein quality of common and quality protein maize during rural tortilla preparation, Cereal Chem., 67, 515 Bressani, 2002, Nixtamalization effects on the contents of phytic acid, calcium, iron and zinc in the whole grain, endosperm and germ of maize, Food Sci. Technol. Int., 8, 81, 10.1177/1082013202008002574 Bressani, 2004, Effect of processing conditions on phytic acid, calcium, iron and zinc contents in lime-cooked maize, J. Agric. Food Chem., 52, 1157, 10.1021/jf030636k Chakraborti, 2011, Evaluation of single cross quality protein maize (QPM) hybrids for kernel iron and zinc concentrations, Indian J. Genet. Plant Breed., 71, 312 Cheah, 2020, Comparison of Zn accumulation and speciation in kernels of sweetcorn and maize differing in maturity, Ann. Bot., 125, 185, 10.1093/aob/mcz179 Dipti, 2017, Changes in the zinc content of selected Bangladeshi rice varieties through modified parboiling and milling methods, SAARC Journal of Agriculture, 15, 31, 10.3329/sja.v15i2.35153 Ekpa, 2018, Sub-Saharan African maize-based foods: technological perspectives to increase the food and nutrition security impacts of maize breeding programmes, Global Food Security, 17, 48, 10.1016/j.gfs.2018.03.007 Ekpa, 2019, Sub-Saharan African maize-based foods: processing practices, challenges and opportunities, Food Rev. Int., 35, 609, 10.1080/87559129.2019.1588290 Escalante-Aburto, 2020, An update of different nixtamalization technologies, and its effects on chemical composition and nutritional value of corn tortillas, Food Rev. Int., 36, 456, 10.1080/87559129.2019.1649693 Espinoza, 2018, 113 European Food Safety Authority NDA Panel, 2014, Scientific opinion on dietary reference values for Zn, EFSA Journal, 12, 3844, 10.2903/j.efsa.2014.3844 Gannon, 2014, Milling method affects zinc content of maize and health status of Mongolian gerbils, FASEB (Fed. Am. Soc. Exp. Biol.) J., 28, 646 Gibson, 2010, A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability, Food Nutr. Bull., 31, 134, 10.1177/15648265100312S206 Gómez-Aldapa, 1996, Cambios en algunos componentes químicos y nutricionales durante la preparación de tortillas de maíz elaboradas con harinas instantáneas obtenidas por extrusión continua, Arch. Latinoam. Nutr., 46, 315 Govaerts Greffeuille, 2011, Changes in iron, zinc and chelating agents during traditional African processing of maize: effect of iron contamination on bioaccesibility, Food Chem., 126, 1800, 10.1016/j.foodchem.2010.12.087 Guzzon, 2021, Conservation and use of Latin America maize diversity: pillar of nutrition security and cultural heritage of humanity, Agronomy, 11, 172, 10.3390/agronomy11010172 Gwirtz, 2014, Processing maize flour and corn meal food products, Ann. N. Y. Acad. Sci., 1312, 66, 10.1111/nyas.12299 Hambidge, 2017, Upregulation of zinc absorption matches increases in physiologic requirements for zinc in women consuming high or moderate phytate diets during late pregnancy and early lactation, J. Nutr., 147, 1079, 10.3945/jn.116.245902 Hindu, 2018, Identification and validation of genomic regions influencing kernel zinc and iron in maize, Theor. Appl. Genet., 131, 1443, 10.1007/s00122-018-3089-3 Listman, 2019, Improving nutrition through biofortification: preharvest and postharvest technologies, CFW (Cereal Foods World), 64 Mariscal, 2015, The effect of different nixtamalization processes on some physicochemical properties, nutritional composition and glycemic index, J. Cereal. Sci., 65, 140, 10.1016/j.jcs.2015.06.016 Miller, 2007, A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate, J. Nutr., 127, 135, 10.1093/jn/137.1.135 Norhaizan, 2009, Determination of phytate, iron, zinc, calcium contents and their molar ratios in commonly consumed raw and prepared food in Malaysia, Malaysian Journal of Nutrition, 15, 213 Nurit, 2009, Reliable and inexpensive colorimetric method for determining protein-bound tryptophan in maize kernels, J. Agric. Food Chem., 57, 7233, 10.1021/jf901315x Nuss, 2010, Maize: a paramount staple crop in the context of global nutrition, Compr. Rev. Food Sci. Food Saf., 9, 417, 10.1111/j.1541-4337.2010.00117.x Ortiz-Monasterio, 2007, Enhancing the mineral and vitamin content of wheat and maize through plant breeding, J. Cereal. Sci., 46, 293, 10.1016/j.jcs.2007.06.005 Palacios-Rojas Palacios-Rojas, 2020, Mining maize diversity and improving its nutritional aspects within agro-food systems, Compr. Rev. Food Sci. Food Saf., 1–26 Raboy, 2000, Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1, Plant Physiol., 124, 355, 10.1104/pp.124.1.355 Ranum, 2014, Global maize production, utilization, and consumption, Ann. N. Y. Acad. Sci., 1312, 105, 10.1111/nyas.12396 Rosado, 2005, Calcium absorption from corn tortilla is relatively high as is dependent upon calcium content and liming in Mexican women, J. Nutr., 135, 2578, 10.1093/jn/135.11.2578 Samil, 2016, Effects of varying nixtamalization conditions on the calcium absorption and pasting properties of dent and flint corn flours, J. Food Process. Eng., 40 Serna-Saldivar, 1991, Effect of lime treatment on the availability of calcium in diets of tortillas and beans: rat growth and balance studies, Cereal Chem., 68, 565 Suri, 2016, Effects of different processing methods on the micronutrient and phytochemical contents of maize: from A to Z, Compr. Rev. Food Sci. Food Saf., 15, 912, 10.1111/1541-4337.12216 Taleon, 2017, Carotenoid retention in biofortified maize using different post-harvest storage and packaging methods, Food Chem., 232, 60, 10.1016/j.foodchem.2017.03.158 Urizar, 1997, Efecto de la nixtamalización del maíz sobre el contenido de ácido fítico, calcio y hierro total y disponible, Arch. Latinoam. Nutr., 47, 217 Vashishth, 2017, Cereal phytases and their importance in improvement of micronutrients bioavailability, 3 Biotech, 7, 42, 10.1007/s13205-017-0698-5 Vazquez-Carrillo, 2014, Genotipos de maíz (Zea mays L.) con diferente contenido de aceite y su relación con la calidad y textura de la tortilla, Agrociencia, 48, 159 Wheal, 2011, A cost-effective acid digestion method using closed polypropylene tubes for inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of plant essential elements, Analytical Methods, 3, 2854, 10.1039/c1ay05430a Willett, 2019, Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems, Lancet, 393, 447, 10.1016/S0140-6736(18)31788-4