Effect of intracellular loop 3 on intrinsic dynamics of human β2-adrenergic receptor

Springer Science and Business Media LLC - Tập 13 - Trang 1-17 - 2013
Ozer Ozcan1, Arzu Uyar2, Pemra Doruker2, Ebru Demet Akten3
1Computational Science and Engineering Program and Polymer Research Center, Bogazici University, Istanbul, Turkey
2Department of Chemical Engineering and Polymer Research Center, Bogazici University, Istanbul, Turkey
3Department of Bioinformatics and Genetics, Faculty of Natural Sciences and Engineering, Kadir Has University, Istanbul, Turkey

Tóm tắt

To understand the effect of the long intracellular loop 3 (ICL3) on the intrinsic dynamics of human β2-adrenergic receptor, molecular dynamics (MD) simulations were performed on two different models, both of which were based on the inactive crystal structure in complex with carazolol (after removal of carazolol and T4-lysozyme). In the so-called loop model, the ICL3 region that is missing in available crystal structures was modeled as an unstructured loop of 32-residues length, whereas in the clipped model, the two open ends were covalently bonded to each other. The latter model without ICL3 was taken as a reference, which has also been commonly used in recent computational studies. Each model was embedded into POPC bilayer membrane with explicit water and subjected to a 1 μs molecular dynamics (MD) simulation at 310 K. After around 600 ns, the loop model started a transition to a “very inactive” conformation, which is characterized by a further movement of the intracellular half of transmembrane helix 6 (TM6) towards the receptor core, and a close packing of ICL3 underneath the membrane completely blocking the G-protein’s binding site. Concurrently, the binding site at the extracellular part of the receptor expanded slightly with the Ser207-Asp113 distance increasing to 18 Å from 11 Å, which was further elaborated by docking studies. The essential dynamics analysis indicated a strong coupling between the extracellular and intracellular parts of the intact receptor, implicating a functional relevance for allosteric regulation. In contrast, no such transition to the “very inactive” state, nor any structural correlation, was observed in the clipped model without ICL3. Furthermore, elastic network analysis using different conformers for the loop model indicated a consistent picture on the specific ICL3 conformational change being driven by global modes.

Tài liệu tham khảo

Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Trong IL, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M: Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000, 289: 739–745. 10.1126/science.289.5480.739 Teller DC, Okada T, Behnke CA, Palczewski K, Stenkamp RE: Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry 2001, 40: 7761–7772. 10.1021/bi0155091 Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Steven RC: High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 2007, 318: 1258–1265. 10.1126/science.1150577 Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK: Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 2007, 450: 383–387. 10.1038/nature06325 Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC: A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 2008, 16: 897–905. 10.1016/j.str.2008.05.001 Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF: Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 2008, 454: 486–491. 10.1038/nature07101 Bokoch MP, Zou Y, Rasmussen SG, Liu CW, Nygaard R, Rosenbaum DM, Fung JJ, Choi H, Thian FS, Kobilka TS, Puglisi JD, Weis WI, Pardo L, Prosser RS, Mueller L, Kobilka BK: Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 2010, 463: 108–112. 10.1038/nature08650 Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, Stevens RC: Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc 2010, 132: 11443–11445. 10.1021/ja105108q Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK, Chae PS, Gellman SH, Dror RO, Shaw DE, Weis WI, Caffrey M, Gmeiner P, Kobilka BK: Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 2011, 469: 236–240. 10.1038/nature09665 Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK: Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 2011, 477: 549–555. 10.1038/nature10361 Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK: Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 2011, 469: 175–180. 10.1038/nature09648 Bahar I, Chennubhotla C, Tobi D: Intrinsic dynamics of enzymes in the unbound state and relation to allosteric regulation. Curr Opin Struct Biol 2007, 17: 633–640. 10.1016/j.sbi.2007.09.011 De Lean A, Stadel JM, Lefkowitz R: A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 1980, 255: 7108–7117. Ghanouni P, Gryczynski Z, Steenhuis JJ, Lee TW, Farrens DL, Lakowicz JR, Kobilka BK: Functionally different agonists induce distinct conformations in the G protein coupling domain of the beta 2 adrenergic receptor. J Biol Chem 2001, 276: 24433–24436. 10.1074/jbc.C100162200 Swaminath G, Xiang Y, Lee TW, Steenhuis J, Parnot C, Kobilka BK: Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermediate conformational states. J Biol Chem 2004, 279: 686–691. Swaminath G, Deupi X, Lee TW, Zhu W, Thian FS, Kobilka TS, Kobilka B: Probing the beta2 adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. J Biol Chem 2005, 280: 22165–22171. 10.1074/jbc.M502352200 Dror RO, Arlow DH, Borhani DW, Jensen MO, Piana S, Shaw DE: Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations. Proc Natl Acad Sci USA 2009, 106: 4689–4694. 10.1073/pnas.0811065106 Dror RO, Arlow DH, Maragakis P, Mildorf TJ, Pan AC, Xu H, Borhani DW, Shaw DE: Activation mechanism of the beta2-adrenergic receptor. Proc Natl Acad Sci USA 2011, 108: 18684–18689. 10.1073/pnas.1110499108 Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, Sun TT, Shaw DE, Mueller L, Prosser RS, Kobilka BK: The dynamic process of β 2 -adrenergic receptor activation. Cell 2013, 152: 532–542. 10.1016/j.cell.2013.01.008 Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK: GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 2007, 318: 1266–1273. 10.1126/science.1150609 O’Dowd BF, Hnatowich M, Regan JW, Leader WM, Caron MG, Lefkowitz RJ: Site-directed mutagenesis of the cytoplasmic domains of the human beta 2-adrenergic receptor. Localization of regions involved in G protein-receptor coupling. J Biol Chem 1988, 263: 15985–15992. Liggett SB, Caron MG, Lefkowitz RJ, Hnatowich M: Coupling of a mutated form of the human beta 2-adrenergic receptor to Gi and Gs. Requirement for multiple cytoplasmic domains in the coupling process. J Biol Chem 1991, 266: 4816–4821. Isin B, Estiu G, Wiest O, Oltvai ZN: Identifying ligand binding conformations of the β2-adrenergic receptor by using its agonists as computational probes. PLoS One 2012, 7(12):e50186. 10.1371/journal.pone.0050186 Katritch V, Reynolds KA, Cherezov V, Hanson MA, Roth CB, Yeager M, Abagyan R: Analysis of full and partial agonists binding to beta(2)-adrenergic receptor suggests a role of transmembrane helix V in agonist-specific conformational changes. J Mol Recognit 2009, 22: 307–318. 10.1002/jmr.949 Simpson LM, Wall ID, Blaney FE, Reynolds CA: Modeling GPCR active state conformations: the beta(2)-adrenergic receptor. Proteins-Structure Function and Bioinformatics 2011, 79: 1441–1457. 10.1002/prot.22974 Amadei A, Linssen ABM, Berendsen HJC: Essential dynamics of proteins. Proteins-Structure Function and Genetics 1993, 17: 412–425. 10.1002/prot.340170408 Kurkcuoglu Z, Bakan A, Kocaman D, Bahar I, Doruker P: Coupling between catalytic loop motions and enzyme global dynamics. Plos Comput Biol 2012, 8(9):e1002705. 10.1371/journal.pcbi.1002705 MATLAB 7.10.0.499(R2010a). Natick, Massachusetts: The MathWorks Inc; 2010. Laskowski RA: PDBsum new things. Nucleic Acids Res 2009, 37: D355-D359. 10.1093/nar/gkn860 Swaminath G, Lee TW, Kobilka B: Identification of an allosteric binding site for ZN(2+) on the beta(2) adrenergic receptor. J Biol Chem 2003, 278: 352–356. MOE 2011.10. 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A2R7: Chemical Computing Group Inc; 2011. The PyMOL Molecular Graphics System P. 0.99. Schrödinger: LLC; Schlessinger A, Punta M, Yachdav G, Kajan L, Rost B: Improved disorder prediction by combination of orthogonal approaches. PLoS ONE 2009, 4(2):e4433. 10.1371/journal.pone.0004433 Linse SS: The nobel prize in chemistry 2012 - advanced information. mm 2013. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2012/advanced-chemistryprize2012.pdf Monod J, Wyman J, Changeux JP: On the nature of allosteric transitions: a plausible model. J Mol Biol 1965, 12: 88–118. 10.1016/S0022-2836(65)80285-6 Weber G: Ligand binding and internal equilibriums in protein. Biochemistry 1972, 11: 864–878. 10.1021/bi00755a028 Ma B, Kumar S, Nussinov R: Folding and binding cascades: shifts in energy landscapes. Proc Natl Acad Sci U S A 1999, 96(18):9970–9972. 10.1073/pnas.96.18.9970 Narayanan E, John B, Mirkovic N, Fiser A, Ilyin VA, Pieper U, Stuart AC, Marti-Renom MA, Madhusudhan MS, Yerkovich B, Sali A: Tools for comparative protein structure modeling and analysis. Nucleic Acids Res 2003, 31: 3375–3380. 10.1093/nar/gkg543 Humphrey W, Dalke A, Schulten K: VMD: visual molecular dynamics. J Mol Graph 1996, 14: 33–38. 10.1016/0263-7855(96)00018-5 Lomize MA, Lomize AL, Pogozheva ID, Mosberg HI: OPM: orientations of proteins in membranes database. Bioinformatics 2006, 22: 623–625. 10.1093/bioinformatics/btk023 Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K: Scalable molecular dynamics with NAMD. J Comput Chem 2005, 26: 1781–1802. 10.1002/jcc.20289 Petrache HI, Dodd SW, Brown MF: Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by (2)H NMR spectroscopy. Biophys J 2000, 79: 3172–3192. 10.1016/S0006-3495(00)76551-9 Mackerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Roux B, Schlenkrich M, Smith J, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M: Self-consistent parameterization of biomolecules for molecular modeling and condensed phase simulations. Faseb Journal 1992, 6: A143-A143. Mackerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Roux B, Schlenkrich M, Smith J, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M: All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 1998, 102: 3586–3616. 10.1021/jp973084f Schlenkrich M, Brickmann J, MacKerell AD Jr, Karplus M: An empirical potential energy function for phospholipids: criteria for parameter optimization and applications. In Biological Membranes: A Molecular Perspective from Computation and Experiment. 1st edition. Edited by: Merz KMJr, Roux B. Birkhauser, Boston; 1996. Feller SE, Yin D, Pastor RW, MacKerell AD Jr: Molecular dynamics simulation of unsaturated lipids at Low hydration: parametrization and comparison with diffraction studies. Biophys J 1997, 73: 2269–2279. 10.1016/S0006-3495(97)78259-6 Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML: Comparison of simple potential functions for simulating liquid water. J Chem Phys 1983, 79: 926–935. 10.1063/1.445869 Feller SE, Zhang YH, Pastor RW: Computer-simulation of liquid/liquid interfaces 2. Surface-tension area dependence of a bilayer and monolayer. J Chem Phys 1995, 103: 10267–10276. 10.1063/1.469928 Ryckaert JP, Ciccotti G, Berendsen HJC: Numerical-integration of cartesian equations of motion of a system with constraints - molecular-dynamics of N-alkanes. J Comput Phys 1977, 23: 327–341. 10.1016/0021-9991(77)90098-5 Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009, 30: 2785–2791. 10.1002/jcc.21256 Doruker P, Atilgan AR, Bahar I: Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: application to alpha-amylase inhibitor. Proteins 2000, 40: 512–524. 10.1002/1097-0134(20000815)40:3<512::AID-PROT180>3.0.CO;2-M Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I: Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 2001, 80: 505–515. 10.1016/S0006-3495(01)76033-X Lezon TR, Bahar I: Constraints imposed by the membrane selectively guide the alternating access dynamics of the glutamate transporter GltPh. Biophys J 2012, 102: 1331–1340. 10.1016/j.bpj.2012.02.028