Effect of incorporation of copper on structural properties of spinel nickel manganites by co-precipitation method

Materials Science for Energy Technologies - Tập 3 - Trang 201-208 - 2020
H. Shashidharagowda1, Shridhar N. Mathad2
1Department of Physics, Tontadarya College of Engineering, Gadag, Karnataka, India
2Department of Physics, K.L.E. Institute of Technology, Hubballi 580030, Karnataka, India

Tài liệu tham khảo

Keren, 2003, Science, 302, 1380, 10.1126/science.1091022 Bukkitgar, 2019, Electro-catalytic behavior of Mg-doped ZnO nano-flakes for oxidation of anti-inflammatory drug, J. Electrochem. Soc., 166, 10.1149/2.0131909jes Shetti, 2019, ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications, Biosens. Bioelectron., 141, 10.1016/j.bios.2019.111417 Bukkitgar, 2016, Electro-oxidation of nimesulide at 5% barium-doped zinc oxide nanoparticle modified glassy carbon electrode, J. Electroanal. Chem., 762, 37, 10.1016/j.jelechem.2015.12.023 Shikandar, 2018, Silver-doped titania modified carbon electrode for electrochemical studies of Furantril, ECS J. Solid State Sci. Technol., 7, Q3215, 10.1149/2.0321807jss Raghava Reddy, 2015, Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis, Appl. Catal. A: Gen., 489, 1, 10.1016/j.apcata.2014.10.001 Raghava Reddy, 2019, Functionalized magnetic nanoparticles/biopolymer hybrids: synthesis methods, properties and biomedical applications, Meth. Microbiol., 46, 227, 10.1016/bs.mim.2019.04.005 Raghava Reddy, 2019, Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: synthesis methods, properties and photocatalytic applications, J. Environ. Manage., 238, 25, 10.1016/j.jenvman.2019.02.075 Feteira, 2009, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective, J. Am. Ceram. Soc., 92, 967, 10.1111/j.1551-2916.2009.02990.x Luo, 2009, Negative temperature coefficient material with low thermal constant and high resistivity for low-temperature thermistor applications, J. Am. Ceram. Soc., 92, 2682, 10.1111/j.1551-2916.2009.03289.x Fritsch, 1998, Correlation between the structure, the microstructure and the electrical properties of nickel manganite negative temperature coefficient (NTC) thermistors, Solid State Ionics, 109, 229, 10.1016/S0167-2738(98)00080-0 Jadhav, 2012, Studies on the properties of Ni0.6Cu0.4Mn2O4 NTC ceramic due to Fe doping, Ceram. Int., 38, 5181, 10.1016/j.ceramint.2012.03.024 Ma, 2017, Preparation andcharacterization of single-phase NiMn2O4 NTC ceramics bytwo-step sintering method, J Mater. Sci: Mater. Electron Jagtap, 2010, Low temperature synthesis and characterization of NTC powder and its ‘lead free’ thick film thermistors, Microelectron. Eng., 87, 104, 10.1016/j.mee.2009.05.026 Jadhav, 2013, Properties of fritless Ni0.6Cu0.4FeyMn2−yO4 NTC ceramic thick films, Phys. Scripta, 87, 065801, 10.1088/0031-8949/87/06/065801 Salker, 2000, Electronic and catalytic studies on Co1–xCuxMn2O4 for CO oxidation, J. Mater. Sci., 35, 4713, 10.1023/A:1004803123577 Yattinahalli, 2015, Synthesis and structural characterization of nano – manganese ferrites, J. Nano- Electron. Phys., 7 Legros, 1990, J. Mater. Sci., 25, 4410, 10.1007/BF00581101 Mathad, 2012, Studies on rod shaped bismuth strontium manganite ceramics, Sci. Adv. Mater., 6, 1276, 10.1166/sam.2012.1422 Liang, 2011, Study on the preparation and electrical properties of NTC thick film thermistor deposited by supersonic atmospheric plasma spraying, Appl. Surf. Sci., 257, 9825, 10.1016/j.apsusc.2011.06.029 Park, 2004, Effect of SiO2 addition on the electrical stability of (Mn2.1−xNi0.9Six)O4 (0≤x≤0.18) negative temperature coefficient thermistors, Mater. Lett., 58, 933, 10.1016/j.matlet.2003.07.039 Park, 2007, Improvement in the electrical stability of Mn–Ni–Co–O NTC thermistors by substituting Cr2O3 for Co3O4, J. Alloy Compd., 437, 211, 10.1016/j.jallcom.2006.07.070 Pang, 2012, Facile synthesis of porous nickel manganite materials and their morphology effect on electrochemical properties, RSC Adv., 2, 5930e5934, 10.1039/c2ra20245j Kulkarni, 2019, Variation in structural and mechanical properties of Cd-doped Co-Zn ferrites, Mater. Sci. Energy Technol., 2, 455 Mathad, 2013, Structural and mechanical properties of Sr+2 doped bismuth manganite thick films, Int. J. Self-propagating High Temp. Synthesis, 22, 180, 10.3103/S1061386213040018 Shedam, 2016, Synthesis and structural investigation of nano-sized cadmium ferrite, J. Modern Mater., 2, 7, 10.21467/jmm.2.1.7-12 Lakhani, 2011, Structural parameters and X-ray Debye temperature determination study on copper ferrite-aluminates, Solid State Sci., 13, 539, 10.1016/j.solidstatesciences.2010.12.023 Zak, 2011, Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method, Ceram. Inter., 37, 393, 10.1016/j.ceramint.2010.08.017 Kulkarni, 2018, Synthesis and structural analysis of Co-Zn-Cd ferrite by Williamson-Hall and size-strain plot methods, Int. J. Self-Propagating High-Temp. Synthesis, 27, 37, 10.3103/S106138621801003X Mathad, 2018, Mechanical and structural properties of Zn0.1Ni0.4Cu0.5Fe2O4 Ferrite, Int. J. Adv. Sci. Eng., 5, 911, 10.29294/IJASE.5.2.2018.911-916 Patil, 2017, FTIR spectra and elastic properties of Cd-substituted Ni–Zn ferrites, Int. J. Self-Propagating High-Temp. Synthesis, 26, 33, 10.3103/S1061386217010083 Hosseini, 2011, J. Environ. Sci. Health A, 46, 291], 10.1080/10934529.2011.539093