Effect of incorporation of copper on structural properties of spinel nickel manganites by co-precipitation method
Tài liệu tham khảo
Keren, 2003, Science, 302, 1380, 10.1126/science.1091022
Bukkitgar, 2019, Electro-catalytic behavior of Mg-doped ZnO nano-flakes for oxidation of anti-inflammatory drug, J. Electrochem. Soc., 166, 10.1149/2.0131909jes
Shetti, 2019, ZnO-based nanostructured electrodes for electrochemical sensors and biosensors in biomedical applications, Biosens. Bioelectron., 141, 10.1016/j.bios.2019.111417
Bukkitgar, 2016, Electro-oxidation of nimesulide at 5% barium-doped zinc oxide nanoparticle modified glassy carbon electrode, J. Electroanal. Chem., 762, 37, 10.1016/j.jelechem.2015.12.023
Shikandar, 2018, Silver-doped titania modified carbon electrode for electrochemical studies of Furantril, ECS J. Solid State Sci. Technol., 7, Q3215, 10.1149/2.0321807jss
Raghava Reddy, 2015, Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis, Appl. Catal. A: Gen., 489, 1, 10.1016/j.apcata.2014.10.001
Raghava Reddy, 2019, Functionalized magnetic nanoparticles/biopolymer hybrids: synthesis methods, properties and biomedical applications, Meth. Microbiol., 46, 227, 10.1016/bs.mim.2019.04.005
Raghava Reddy, 2019, Polymeric graphitic carbon nitride (g-C3N4)-based semiconducting nanostructured materials: synthesis methods, properties and photocatalytic applications, J. Environ. Manage., 238, 25, 10.1016/j.jenvman.2019.02.075
Feteira, 2009, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective, J. Am. Ceram. Soc., 92, 967, 10.1111/j.1551-2916.2009.02990.x
Luo, 2009, Negative temperature coefficient material with low thermal constant and high resistivity for low-temperature thermistor applications, J. Am. Ceram. Soc., 92, 2682, 10.1111/j.1551-2916.2009.03289.x
Fritsch, 1998, Correlation between the structure, the microstructure and the electrical properties of nickel manganite negative temperature coefficient (NTC) thermistors, Solid State Ionics, 109, 229, 10.1016/S0167-2738(98)00080-0
Jadhav, 2012, Studies on the properties of Ni0.6Cu0.4Mn2O4 NTC ceramic due to Fe doping, Ceram. Int., 38, 5181, 10.1016/j.ceramint.2012.03.024
Ma, 2017, Preparation andcharacterization of single-phase NiMn2O4 NTC ceramics bytwo-step sintering method, J Mater. Sci: Mater. Electron
Jagtap, 2010, Low temperature synthesis and characterization of NTC powder and its ‘lead free’ thick film thermistors, Microelectron. Eng., 87, 104, 10.1016/j.mee.2009.05.026
Jadhav, 2013, Properties of fritless Ni0.6Cu0.4FeyMn2−yO4 NTC ceramic thick films, Phys. Scripta, 87, 065801, 10.1088/0031-8949/87/06/065801
Salker, 2000, Electronic and catalytic studies on Co1–xCuxMn2O4 for CO oxidation, J. Mater. Sci., 35, 4713, 10.1023/A:1004803123577
Yattinahalli, 2015, Synthesis and structural characterization of nano – manganese ferrites, J. Nano- Electron. Phys., 7
Legros, 1990, J. Mater. Sci., 25, 4410, 10.1007/BF00581101
Mathad, 2012, Studies on rod shaped bismuth strontium manganite ceramics, Sci. Adv. Mater., 6, 1276, 10.1166/sam.2012.1422
Liang, 2011, Study on the preparation and electrical properties of NTC thick film thermistor deposited by supersonic atmospheric plasma spraying, Appl. Surf. Sci., 257, 9825, 10.1016/j.apsusc.2011.06.029
Park, 2004, Effect of SiO2 addition on the electrical stability of (Mn2.1−xNi0.9Six)O4 (0≤x≤0.18) negative temperature coefficient thermistors, Mater. Lett., 58, 933, 10.1016/j.matlet.2003.07.039
Park, 2007, Improvement in the electrical stability of Mn–Ni–Co–O NTC thermistors by substituting Cr2O3 for Co3O4, J. Alloy Compd., 437, 211, 10.1016/j.jallcom.2006.07.070
Pang, 2012, Facile synthesis of porous nickel manganite materials and their morphology effect on electrochemical properties, RSC Adv., 2, 5930e5934, 10.1039/c2ra20245j
Kulkarni, 2019, Variation in structural and mechanical properties of Cd-doped Co-Zn ferrites, Mater. Sci. Energy Technol., 2, 455
Mathad, 2013, Structural and mechanical properties of Sr+2 doped bismuth manganite thick films, Int. J. Self-propagating High Temp. Synthesis, 22, 180, 10.3103/S1061386213040018
Shedam, 2016, Synthesis and structural investigation of nano-sized cadmium ferrite, J. Modern Mater., 2, 7, 10.21467/jmm.2.1.7-12
Lakhani, 2011, Structural parameters and X-ray Debye temperature determination study on copper ferrite-aluminates, Solid State Sci., 13, 539, 10.1016/j.solidstatesciences.2010.12.023
Zak, 2011, Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method, Ceram. Inter., 37, 393, 10.1016/j.ceramint.2010.08.017
Kulkarni, 2018, Synthesis and structural analysis of Co-Zn-Cd ferrite by Williamson-Hall and size-strain plot methods, Int. J. Self-Propagating High-Temp. Synthesis, 27, 37, 10.3103/S106138621801003X
Mathad, 2018, Mechanical and structural properties of Zn0.1Ni0.4Cu0.5Fe2O4 Ferrite, Int. J. Adv. Sci. Eng., 5, 911, 10.29294/IJASE.5.2.2018.911-916
Patil, 2017, FTIR spectra and elastic properties of Cd-substituted Ni–Zn ferrites, Int. J. Self-Propagating High-Temp. Synthesis, 26, 33, 10.3103/S1061386217010083
Hosseini, 2011, J. Environ. Sci. Health A, 46, 291], 10.1080/10934529.2011.539093