Effect of hypobaric storage on quality, antioxidant enzyme and antioxidant capability of the Chinese bayberry fruits

Springer Science and Business Media LLC - Tập 7 - Trang 1-7 - 2013
Hangjun Chen1, Hailong Yang2, Haiyan Gao1, Jie Long1, Fei Tao1, Xiangjun Fang1, Yueming Jiang3
1Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
2School of Life & Environmental Sciences, Wenzhou, China
3South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China

Tóm tắt

The Chinese bayberry (Myrica rubra Sieb. and Zucc.) is a subtropical fruit native to China, with unique flavor, sweet and sour taste, and high nutrition and health values. The fruit is highly perishable and susceptible to mechanical injury, physiological deterioration and fungal decay once harvested. This study was to investigate the effect of hypobaric storage on the quality of Chinese bayberry fruit and then develop storage technology to prolong the supply of the fruit. The fruit stored under hypobaric conditions exhibited lower decay, higher titratable acidity and total phenolics compared with those stored under normal atmospheric conditions. Hypobaric storage significantly reduced malonaldehyde accumulation, respiratory rate and maintained high catalase and peroxidase activities of Chinese bayberry fruit. Ferric reducing antioxidant power was also higher in the fruit stored under hypobaric condition than those under normal atmospheric conditions. Hypobaric storage improved the metabolism, antioxidant system and postharvest quality of Chinese bayberry fruit and provided an effective alternative method to prolong the storage life of this fruit.

Tài liệu tham khảo

Chen K, Xu C, Zhang B, Ferguson IB: Red bayberry: Botany and horticulture. Horticultural Reviews. 2004, 30: 83-114. Li ZL, Zhang SL, Chen DM: Red bayberry (Myrica rubra Seib & Zucc.): A valuable evergreen tree fruit for tropical and subtropical areas. Acta Horticulturae. 1992, 321: 112-121. Fang Z, Zhang Y, Lü Y, Ma G, Chen J, Liu D, Ye X: Phenolic compounds and antioxidant capacities of bayberry juices. Food Chem. 2009, 113: 884-888. 10.1016/j.foodchem.2008.07.102. Bao JS, Cai YZ, Sun M, Wang G, Corke H: Anthocyanins, flavonols, and free radical scavenging activity of chinese bayberry (Myrica rubra) extracts and their color properties and stability. J Agric Food Chem. 2005, 53: 2327-2332. 10.1021/jf048312z. Zhang W, Li X, Zheng J, Wang G, Sun C, Ferguson I, Chen K: Bioactive components and antioxidant capacity of Chinese bayberry (Myrica rubra Sieb. and Zucc.) fruit in relation to fruit maturity and postharvest storage. Eur Food Res Technol. 2008, 227: 1091-1097. 10.1007/s00217-008-0824-z. Wang K, Cao S, Jin P, Rui H, Zheng Y: Effect of hot air treatment on postharvest mould decay in Chinese bayberry fruit and the possible mechanisms. Int J Food Microbiol. 2010, 141: 11-16. 10.1016/j.ijfoodmicro.2010.05.004. Zhang W, Chen K, Zhang B, Sun C, Cai C, Zhou C, Xu W, Zhang W, Ferguson IB: Postharvest responses of Chinese bayberry fruit. Postharvest Biol Technol. 2005, 37: 241-251. 10.1016/j.postharvbio.2005.05.005. Yang Z, Zheng Y, Cao S, Tang S, Ma S, Li N: Effects of storage temperature on the textural, properties of Chinese bayberry fruit. J Texture Stud. 2007, 38: 166-177. 10.1111/j.1745-4603.2007.00092.x. Zheng Y, Yang Z, Chen X: Effect of high oxygen atmospheres on fruit decay and quality in Chinese bayberries, strawberries and blueberries. Food Control. 2008, 19: 470-474. 10.1016/j.foodcont.2007.05.011. Yang Z, Zheng Y, Cao S: Effect of high oxygen atmosphere storage on quality, antioxidant enzymes, and DPPH-radical scavenging activity of Chinese Bayberry fruit. J Agric Food Chem. 2009, 57: 176-181. 10.1021/jf803007j. Luo Z, Xu T, Xie J, Zhang L, Xi Y: Effect of hot air treatment on quality and ripening of Chinese bayberry fruit. J Sci Food Agric. 2009, 89: 443-448. 10.1002/jsfa.3469. Wang K, Jin P, Tang S, Shang H, Rui H, Di H, Cai Y, Zheng Y: Improved control of postharvest decay in Chinese bayberries by a combination treatment of ethanol vapor with hot air. Food Control. 2011, 22: 82-87. 10.1016/j.foodcont.2010.05.011. Giri A, Osako K, Ohshima T: Effects of hypobaric and temperature-dependent storage on headspace aroma-active volatiles in common squid miso. Food Res Int. 2011, 44: 739-747. 10.1016/j.foodres.2011.01.025. Li W, Zhang M, Yu H: Study on hypobaric storage of green asparagus. J Food Eng. 2006, 73: 225-230. 10.1016/j.jfoodeng.2005.01.024. Dilley DR: Hypobaric storage of perishable commodities - fruits, vegetables, flowers and seedlings. Acta Horticulturae. 1977, 62: 61-70. Romanazzi G, Nigro F, Ippolito A: Short hypobaric treatments potentiate the effect of chitosan in reducing storage decay of sweet cherries. Postharvest Biol Technol. 2003, 29: 73-80. 10.1016/S0925-5214(02)00239-9. Chen W, Gao H, Chen H, Mao J, Song L, Ge L: Effects of hypobaric storage on postharvest physiology and quality of flesh-melting textured juicy peach. Trans Chin Soc Agric Mach. 2010, 41 (9): 108-112. (in Chinese) Burg SP: Postharvest physiology and hypobaric storage of fresh produce. 2004, Wallingford, UK: CABI Romanazzi G, Nigro F, Ippolito A, Salerno M: Effect of short hypobaric treatments on postharvest rots of sweet cherries, strawberries and table grapes. Postharvest Biol Technol. 2001, 22: 1-6. 10.1016/S0925-5214(00)00188-5. Corey KA, Bates ME, Adams SL: Carbon dioxide exchange of lettuce plants under hypobaric conditions. Adv Space Res. 1996, 18: 265-272. An DS, Park E, Lee DS: Effect of hypobaric packaging on respiration and quality of strawberry and curled lettuce. Postharvest Biol Technol. 2009, 52: 78-83. 10.1016/j.postharvbio.2008.09.014. He C, Davies FT, Lacey RE, Drew MC, Brown DL: Effect of hypobaric conditions on ethylene evolution and growth of lettuce and wheat. J Plant Physiol. 2003, 160: 1341-1350. 10.1078/0176-1617-01106. Hodges DM, Lester GE, Munro KD, Toivonen PTA: Oxidative stress: importance for postharvest quality. HortScience. 2004, 39: 924-929. Fang ZX, Zhang M, Wang LX: HPLC-DAD-ESIMS analysis of phenolic compounds in bayberries (Myrica rubra Sieb. et Zucc). Food Chem. 2007, 100: 845-852. 10.1016/j.foodchem.2005.09.024. Rice-Evans CA, Miller NJ, Paganga G: Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996, 20: 933-956. 10.1016/0891-5849(95)02227-9. Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254. 10.1016/0003-2697(76)90527-3. Beers RF, Sizer IW: A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952, 195: 133-140. Sigleton VL, Orthofer R, Lamuela-Raventos RM: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299: 152-178. Benzie IF, Strain JJ: The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem. 1996, 239: 70-76. 10.1006/abio.1996.0292. Jiao S, Johnson JA, Fellman JK, Mattinson DS, Tang J, Davenport TL, Wang S: Evaluating the storage environment in hypobaric chambers used for disinfesting fresh fruits. Biosyst Eng. 2012, 111: 271-279. 10.1016/j.biosystemseng.2011.12.003.