Effect of harvesting age and performance evaluation on biogasification from Napier grass in separated stages process

KSCE Journal of Civil Engineering - Tập 22 Số 1 - Trang 40-45 - 2018
M. Chanpla1, Pratin Kullavanijaya1, Apiwaj Janejadkarn1, Orathai Chavalparit2
1Dept. of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
2Research Unit of Environmental Management and Sustainable Industry, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aganga, A. A., Ophelia, U. J., Thema, T., and Baitshotlhi, J. C. (2005). “Chemical composition of Napier grass (Pennisetum purpureum) at different stages of growth and Napier grass silages with additives.” Journal of Biological Science, Vol. 5 No. 4, pp. 493–496, DOI: 10.3923/ jbs.2005.493.496.

Amon, T., Amon, B., Kryvoruchko, V., Machmuller, A., Hopfner-Sixt, K., Bodiroza, V., and Wagentristl, H. (2007). “Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations.” Bioresource technology, Vol. 98, No. 17, pp. 3204–3212, DOI: 10.1016/j.biortech.2006.07.007.

Anderson, G. K. and Yang, G. (1992). “Determination of bicarbonate and total volatile acid concentration in anaerobic digester using a simple titration.” Water Environmental Research, Vol. 64, No. 1, pp. 53–59, DOI: 10.2175/WER.64.1.8.

APHA, AWWA, WEF (1998). Standard Methods for Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC.

Asam, Z., Paulsen, S., Nizami, A., Rafique, R., and Kiely, G. (2011). “How can we improve biomethane production per unit of feedstock in biogas plant?.” Apply Energy, Vol. 88, No. 6, pp. 2013–2018, DOI: 10.1016/j.apenergy.2010.12.036.

DEDE (2012). The Renewable and Alternative Energy Development Plan: for 25 percent in 10 years, Department of Alternative Energy Promotion and Efficiency. Bangkok. Thailand.

Janejadkarn, A. and Chavalparit, O. (2014). “Biogas production from Napier grass (Pennisetum purpureum × Pennisetum americanum).” Advanced Materials Research, Vol. 856, pp. 327–332, DOI: 10.4028 www.scientific.net/amr.856.32.

Letomaki, A., Huttunen, S., Lehtinen, T. M., and Rintala, T. A. (2008). “Anaerobic digestion of grass silage in leach bed process for methane production.” Bioresource Technology, Vol. 99, No. 8, pp. 3267–3278, DOI: 10.1016/j.biortech.2007.04.072.

Masse, M., Gilbert, Y., Savoie, P., Belanger, G., Parent, G., and Babineau, D. (2010). “Methane yield from switchgrass harvested at different stages of development in Eastern Canada,” Bioresource Technology. Vol. 101, No. 24, pp. 9536–9541, DOI: 10.1016/j.biortech.2010.07.018.

McEniry, J. and O’Kiely, P. (2013). “Anaerobic methane production from five common grassland species at sequential stages of maturity.” Bioresource Technology, Vol. 127, No. 1, pp. 43–150, DOI: 10.1016/ j.biortech.2012.09.084.

Murphy, J. and Power, N. (2009). “Technical and economic analysis of biogas production in Ireland utilizing three different crop rotations.” Applied Energy, Vol. 86, No. 1, pp. 25–36, DOI: 10.1016/j.apenergy. 2008.03.015.

Nizami, A. S. and Murphy, J. D. (2010). “What type of digester configuration should be employed to produce biomethane from grass?.” Renewable and Sustainable Energy Reviews, Vol. 14, No. 6, pp. 1558–1568, DOI: 10.1016/j.rser.2010.02.006.

Nizami, A. S., Orozeo, A., Groom, E., Dieterich, B., and Murphy, J. D. (2012). “How much gas can we get from grass?.” Apply Energy, Vol. 92, April, pp. 783–790, DOI: 10.1016/j.apenergy.2011.08.033.

Prochnow, A., Heiermann, M., Plochl, M., Linke, B., Idler, C., Amon, T., and Hobbs, P. J. (2009). “Bioenergy from permanent grassland-a review: 1. Biogas.” Bioresource Technology, Vol. 100, No. 21, pp. 4931–4944, DOI: 10.1016/j.biortech.2009.50.070.

Raposo, F., De la Rubia, M., Fernandez-Cegri, V., and Borja, R. (2012). “Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures.” Renewable and Sustainable Energy Reviews, Vol. 16, No. 1, pp. 861–877, DOI: 10.1016/j.rser.2011.09.008.

Rengsirikul, K., Ishii, Y., Kangvansaichol, K., Sripichitt, P., Pensive, V., Vaithanomsat, P., Nakamanee, G., and Tudsri, S. (2013). “Biomass yield, chemical composition and potential ethanol yields of 8 cultivars of Napier grass (Pennisetum purpureum Schumach.) harvested 3-monthly in central Thailand.” Journal of Sustainable Bioenergy System, Vol. 3, No. 3, pp. 107–112, DOI: 10.4236/jsbs.2013.32015.

Saitawee, L., Hussaro, K., Teekasap, S., and Cheamsawat, N. (2014). “Biogas production from anaerobic co-digestion of cow dung and organic waste (Napier Pakchong 1 and food waste) in Thailand: effect of temperature on biogas product.” American Journal of Environmental Science, Vol. 10, No. 2, pp. 129–139, DOI: 10.3844/ ajessp. 2014.129.139.

Sawatdeenarunat, C., Surendra, K. C., Takara, D., Oechsner, H., and Khanal, S. K. (2015). “Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities,” Bioresource Technology, Vol. 178, February, pp. 178–186, DOI: 10.1016/j.biortech.2014.09.103.

Smolders, G. J. F., Van der Meij, J., Van Loosdrecht, M. C. M., and Heijnen, P. (1994). “Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence.” Biotechnology and Bioengineering, Vol. 43, No. 6, pp. 461–470, DOI: 10.1002/bit.260430605.

Surendra, K. C. and Khanal, S. K. (2015). “Effects of crop maturity and size reduction on digestibility and methane yield of dedicated energy crop.” Bioresource Technology, Vol. 178, February, pp. 187–193, DOI: 10.1016/j.biortech.2014.09.055.

Takara, D. and Khanal, S. K. (2015). “Characterizing compositional changes of Napier grass at different stages of growth for biofuel and biobased products potential.” Bioresource Technology, Vol. 188, July, pp. 103–108, DOI: 10.1016/j.biortech.2015.01.114.

Van Soest, P. J. and Wine, R. H. (1967). “Use of detergents in the analysis of fibrous feeds: IV Determination of plant cell-wall constituents.” Journal of Associate Official Analytical Chemistry, Vol. 50, No. 1, pp. 50–59.