Effect of guanidinium on mesoscopic perovskite solar cells

Journal of Materials Chemistry A - Tập 5 Số 1 - Trang 73-78
Xiaomeng Hou1,2,3,4,5, Yue Hu1,2,3,4,5, Huawei Liu1,2,3,4,5, Anyi Mei1,2,3,4,5, Xiong Li1,2,3,4,5, Miao Duan1,2,3,4,5, Guoan Zhang1,2,3,4,5, Yaoguang Rong1,2,3,4,5, Hongwei Han1,2,3,4,5
1Huazhong University of Science and Technology
2P. R. China
3School of Chemistry and Chemical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
4Wuhan 430074
5Wuhan National Laboratory for Optoelectronics

Tóm tắt

A multifunctional additive of guanidinium chloride (GuCl) in a CH3NH3PbI3 perovskite absorber enabled a high open-circuit voltage of over 1.0 V for printable mesoscopic perovskite solar cells based on a TiO2/ZrO2/carbon architecture.

Từ khóa


Tài liệu tham khảo

Kojima, 2009, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r

Kim, 2012, Sci. Rep., 2, 591, 10.1038/srep00591

Xing, 2013, Science, 342, 344, 10.1126/science.1243167

Eperon, 2014, Energy Environ. Sci., 7, 982, 10.1039/c3ee43822h

Dong, 2015, Science, 347, 967, 10.1126/science.aaa5760

Rong, 2014, J. Phys. Chem. Lett., 5, 2160, 10.1021/jz500833z

NREL: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

Heo, 2013, Nat. Photonics, 7, 486, 10.1038/nphoton.2013.80

Ball, 2013, Energy Environ. Sci., 6, 1739, 10.1039/c3ee40810h

Rong, 2015, Adv. Energy Mater., 5, 1501066, 10.1002/aenm.201501066

Ku, 2013, Sci. Rep., 3, 3132, 10.1038/srep03132

Mei, 2014, Science, 345, 295, 10.1126/science.1254763

Chen, 2016, Adv. Energy Mater., 6, 1502009, 10.1002/aenm.201502009

Tidhar, 2014, J. Am. Chem. Soc., 136, 13249, 10.1021/ja505556s

Liu, 2015, J. Am. Chem. Soc., 137, 1790, 10.1021/ja5125594

Abate, 2014, Nano Lett., 14, 3247, 10.1021/nl500627x

Noel, 2014, ACS Nano, 8, 9815, 10.1021/nn5036476

Marco, 2016, Nano Lett., 16, 1009, 10.1021/acs.nanolett.5b04060

Rong, 2013, J. Nanophotonics, 7, 073090, 10.1117/1.JNP.7.073090

Baikie, 2013, J. Mater. Chem. A, 1, 5628, 10.1039/c3ta10518k

Dimesso, 2016, Mater. Sci. Eng., B, 204, 27, 10.1016/j.mseb.2015.11.006

Bi, 2016, Adv. Mater., 28, 2910, 10.1002/adma.201505255

Zhang, 2015, Nat. Commun., 6, 10030, 10.1038/ncomms10030

Zuo, 2014, Nanoscale, 6, 9935, 10.1039/C4NR02425G

Li, 2015, Nat. Chem., 7, 703, 10.1038/nchem.2324

Mitzi, 1994, Nature, 369, 467, 10.1038/369467a0

Smith, 2014, Angew. Chem., Int. Ed., 53, 11232, 10.1002/anie.201406466

Rong, 2015, Nanoscale, 7, 10595, 10.1039/C5NR02866C

Tang, 2016, Nano Energy, 21, 51, 10.1016/j.nanoen.2015.12.013

Zhao, 2014, J. Phys. Chem. C, 118, 9412, 10.1021/jp502696w

Chen, 2015, Chem. Mater., 27, 1448, 10.1021/acs.chemmater.5b00041

Wen, 2015, Nano Lett., 15, 4644, 10.1021/acs.nanolett.5b01405

Chen, 2015, Nat. Commun., 6, 7269, 10.1038/ncomms8269

You, 2014, Appl. Phys. Lett., 105, 183902, 10.1063/1.4901510

Wetzelaer, 2015, Adv. Mater., 27, 1837, 10.1002/adma.201405372

Kim, 2015, J. Phys. Chem. Lett., 6, 4633, 10.1021/acs.jpclett.5b02273

Haruyama, 2015, J. Am. Chem. Soc., 137, 10048, 10.1021/jacs.5b03615

Eames, 2015, Nat. Commun., 6, 7497, 10.1038/ncomms8497

Dualeh, 2014, ACS Nano, 8, 362, 10.1021/nn404323g

Kim, 2013, Nano Lett., 13, 2412, 10.1021/nl400286w

Zhang, 2015, J. Mater. Chem. A, 3, 24272, 10.1039/C5TA07507F

Xu, 2015, Nano Lett., 15, 2402, 10.1021/nl504701y

Lu, 2013, Nano Lett., 13, 2365, 10.1021/nl304533j

Zhang, 2007, J. Phys. Chem. C, 111, 398, 10.1021/jp0648745