Tác động của việc rãnh trên bề mặt bên trong của viên nang hình cầu chứa nước khử ion đối với việc truyền nhiệt nhanh trong các ứng dụng lưu trữ năng lượng nhiệt mát

Malarmannan Subramaniyan1, Chandrasekaran Ponnusamy1
1Department of Mechanical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, India

Tóm tắt

Nhu cầu về các ứng dụng làm lạnh đang gia tăng nhiều lần; việc tích hợp hệ thống CTES sẽ giảm thiểu nhu cầu và ô nhiễm do các lĩnh vực xây dựng gây ra. Mục tiêu của nghiên cứu này là điều tra ảnh hưởng của việc tạo rãnh trên bề mặt bên trong của viên nang hình cầu đối với các đặc tính đông đặc của nước khử ion (DI), loại nước này được sử dụng rộng rãi trong các ứng dụng lưu trữ năng lượng nhiệt làm mát. Tám bán cầu bằng thép nhẹ có đường kính 100 mm và độ dày 1 mm đã được sử dụng để tạo ra bốn viên nang hình cầu thông qua quá trình hàn. Trong số bốn viên nang, một viên có bề mặt nhẵn và ba viên còn lại có độ sâu rãnh lần lượt là 0,3 mm, 0,5 mm và 0,7 mm. Việc tạo rãnh trong viên nang hình cầu bán cầu đã được thực hiện thông qua quy trình tiện. Các thí nghiệm được tiến hành ở các nhiệt độ bồn tắm khác nhau là −6 °C, −9 °C và −12 °C. Kết quả thí nghiệm cho thấy việc sửa đổi bề mặt dẫn đến sự giảm đáng kể thời gian đông đặc, và đặc biệt, phần trăm giảm tối đa trong thời gian đông đặc đạt được ở −6 °C. Việc cung cấp các rãnh giúp bộ bay hơi hoạt động ở −6 °C thay vì −12 °C cho đến khi đông đặc 75% khối lượng, và dự kiến tiết kiệm năng lượng là 18 đến 24%. Khi các kỹ thuật nâng cao tốc độ truyền nhiệt là không phát thải carbon, việc tái chế PCM sẽ không có tác động đến ô nhiễm môi trường.

Từ khóa

#năng lượng nhiệt #lưu trữ nhiệt #nước khử ion #truyền nhiệt #rãnh #ô nhiễm môi trường #làm mát #tiết kiệm năng lượng

Tài liệu tham khảo

Adref KT, Eames IW (2002) Experiments on charging and discharging of spherical thermal (ice) storage elements. Int J Energy Res 26:949–964. https://doi.org/10.1002/er.816 Akio S, Yoshio U, Seiji O et al (1990) Fundamental research on the supercooling phenomenon on heat transfer surfaces—investigation of an effect of characteristics of surface and cooling rate on a freezing temperature of supercooled water. Int J Heat Mass Transf 33:1697–1709. https://doi.org/10.1016/0017-9310(90)90025-P Alazwari MA, Abu-Hamdeh NH, Khoshaim A et al (2021) Using phase change material as an energy-efficient technique to reduce energy demand in air handling unit integrated with absorption chiller and recovery unit—applicable for high solar-irradiance regions. J Energy Storage 42:103080. https://doi.org/10.1016/j.est.2021.103080 Altohamy AA, Abd Rabbo MF, Sakr RY, Attia AAA (2015) Effect of water based Al2O3 nanoparticle PCM on cool storage performance. Appl Therm Eng 84:331–338. https://doi.org/10.1016/j.applthermaleng.2015.03.066 Altohamy AA, Elsemary IMM, Abdo S et al (2020) Encapsulation surface roughness effect on the performance of cool storage systems. J Energy Storage 28:101279. https://doi.org/10.1016/j.est.2020.101279 Aly KA, El-Lathy AR, Fouad MA (2019) Enhancement of solidification rate of latent heat thermal energy storage using corrugated fins. J Energy Storage 24:100785. https://doi.org/10.1016/j.est.2019.100785 Amaral C, Vicente R, Marques PAAP, Barros-Timmons A (2017) Phase change materials and carbon nanostructures for thermal energy storage: a literature review. Renew Sustain Energy Rev 79:1212–1228. https://doi.org/10.1016/j.rser.2017.05.093 Bédécarrats JP, Castaing-Lasvignottes J, Strub F, Dumas JP (2009) Study of a phase change energy storage using spherical capsules. Part I: Experimental results. Energy Convers Manag 50:2527–2536. https://doi.org/10.1016/j.enconman.2009.06.004 Chandrasekaran P, Cheralathan M, Kumaresan V, Velraj R (2014) Solidification behavior of water based nanofluid phase change material with a nucleating agent for cool thermal storage system. Int J Refrig 41:157–163. https://doi.org/10.1016/j.ijrefrig.2013.12.017 Chandrasekaran P, Cheralathan M, Velraj R (2015a) Influence of the size of spherical capsule on solidification characteristics of DI (deionized water) water for a cool thermal energy storage system—an experimental study. Energy 90:807–813. https://doi.org/10.1016/j.energy.2015.07.113 Chandrasekaran P, Cheralathan M, Velraj R (2015b) Effect of fill volume on solidification characteristics of DI (deionized) water in a spherical capsule—an experimental study. Energy 90:508–515. https://doi.org/10.1016/j.energy.2015.07.086 Cheralathan M, Velraj R, Renganarayanan S (2007a) Effect of porosity and the inlet heat transfer fluid temperature variation on the performance of cool thermal energy storage system. Heat Mass Transfer 43:833–842. https://doi.org/10.1007/s00231-006-0163-1 Cheralathan M, Velraj R, Renganarayanan S (2007b) Performance analysis on industrial refrigeration system integrated with encapsulated PCM-based cool thermal energy storage system. Int J Energy Res 31:1398–1413. https://doi.org/10.1002/er.1313 Dhivya S, Hussain SI, Kalaiselvam S (2020) Novel metal coated nanocapsules of ethyl esters fatty acid eutectic mixture as phase change material with enhanced thermal conductivity for energy storage applications. Thermochim Acta 687:178581. https://doi.org/10.1016/j.tca.2020.178581 Eames IW, Adref KT (2002) Freezing and melting of water in spherical enclosures of the type used in thermal (ice) storage systems. Appl Therm Eng 22:733–745. https://doi.org/10.1016/S1359-4311(02)00026-1 Elghnam RI, Abdelaziz RA, Sakr MH, Abdelrhman HE (2012) An experimental study of freezing and melting of water inside spherical capsules used in thermal energy storage systems. Ain Shams Eng J 3:33–48. https://doi.org/10.1016/j.asej.2011.10.004 Faucheux M, Muller G, Havet M, LeBail A (2006) Influence of surface roughness on the supercooling degree: case of selected water/ethanol solutions frozen on aluminium surfaces. Int J Refrig 29:1218–1224. https://doi.org/10.1016/j.ijrefrig.2006.01.002 Fok SC, Tan FL, Sua CC (2011) Experimental investigations on the cooling of a motorcycle helmet with phase change material. Therm Sci 15:807–816. https://doi.org/10.2298/TSCI100627027F GaneshKumar P, Sakthivadivel D, Prabakaran R et al (2022) Exploring the thermo-physical characteristic of novel multi-wall carbon nanotube—therminol-55-based nanofluids for solar-thermal applications. Environ Sci Pollut Res 29:10717–10728. https://doi.org/10.1007/s11356-021-16393-x Gasia J, Maldonado JM, Galati F et al (2019) Experimental evaluation of the use of fins and metal wool as heat transfer enhancement techniques in a latent heat thermal energy storage system. Energy Convers Manag 184:530–538. https://doi.org/10.1016/j.enconman.2019.01.085 Hajizadeh MR, Keshteli AN, Bach QV (2020) Solidification of PCM within a tank with longitudinal-Y shape fins and CuO nanoparticle. J Mol Liq 317. https://doi.org/10.1016/j.molliq.2020.114188 Hegde RN, Rao SS, Reddy RP (2011) Experimental study on CuO nanoparticles in distilled water and its effect on heat transfer on a vertical surface. J Mech Sci Technol 25:2927–2934. https://doi.org/10.1007/s12206-011-0719-y Hosseinizadeh SF, Darzi AAR, Tan FL (2012) Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container. Int J Therm Sci 51:77–83. https://doi.org/10.1016/j.ijthermalsci.2011.08.006 Ismail KAR, Moraes RIR (2009) A numerical and experimental investigation of different containers and PCM options for cold storage modular units for domestic applications. Int J Heat Mass Transf 52:4195–4202. https://doi.org/10.1016/j.ijheatmasstransfer.2009.04.031 Ismail KAR, Henríquez JR, da Silva TM (2003) A parametric study on ice formation inside a spherical capsule. Int J Therm Sci 42:881–887. https://doi.org/10.1016/S1290-0729(03)00060-7 Ismail KA, Henrı́quez J (2000) Solidification of PCM inside a spherical capsule. Energy Convers Manag 41:173–187. https://doi.org/10.1016/S0196-8904(99)00101-6 Jia X, Zhai X, Cheng X (2019) Thermal performance analysis and optimization of a spherical PCM capsule with pin-fins for cold storage. Appl Therm Eng 148:929–938. https://doi.org/10.1016/j.applthermaleng.2018.11.105 Khezri A, Sahebi M, Mohammadi M (2022) Fabrication and Thermal properties of graphene nanoplatelet-enhanced phase change materials based on paraffin encapsulated by melamine–formaldehyde. J Therm Anal Calorim 147:7683–7691. https://doi.org/10.1007/s10973-021-11085-7 Khor JO, Yang L, Akhmetov B et al (2020) Application of granular materials for void space reduction within packed bed thermal energy storage system filled with macro-encapsulated phase change materials. Energy Convers Manag 222. https://doi.org/10.1016/j.enconman.2020.113118 Kumaresan V, Raghavan KS, Ponrajan Vikram M, Iyyappan J (2021a) Role of graphitized mesoporous carbon on solidification and melting characteristics of water for cool thermal storage. Fuller Nanotub Carbon Nanostructures 29:890–898. https://doi.org/10.1080/1536383X.2021.1910811 Kumaresan V, Raghavan KS, Vikram MP, Iyyappan J (2021b) Expedited energy charging of water using natural graphite flake for cool thermal storage. Fuller Nanotub Carbon Nanostructures 29:670–677. https://doi.org/10.1080/1536383X.2021.1879056 Mahdavi Adeli M, Farahat S, Sarhaddi F (2020) Parametric analysis of a zero-energy building aiming for a reduction of CO2 emissions for warm climate. Environ Sci Pollut Res 27:34121–34134. https://doi.org/10.1007/s11356-020-09467-9 Mandev E, Manay E (2022) Effects of surface roughness in multiple microchannels on mixed convective heat transfer. Appl Therm Eng 217:119102. https://doi.org/10.1016/j.applthermaleng.2022.119102 McKenna P, Turner WJN, Finn DP (2021) Thermal energy storage using phase change material: analysis of partial tank charging and discharging on system performance in a building cooling application. Appl Therm Eng 198:117437. https://doi.org/10.1016/j.applthermaleng.2021.117437 Moore FE, Bayazitoglu Y (1982) Melting within a spherical enclosure. J Heat Transfer 104:19–23. https://doi.org/10.1115/1.3245053 Muthukumar P, Lakshmi DVN (2017) Nucleation enhancement studies on aqueous salt solutions. Energy Procedia 109:174–180. https://doi.org/10.1016/j.egypro.2017.03.089 Nóbrega CRES, Ismail KAR, Lino FAM (2020) Solidification around axial finned tube submersed in PCM: modeling and experiments. J Energy Storage 29. https://doi.org/10.1016/j.est.2020.101438 Palanichamy S, Athiimoulam K (2022) Influence of various additives on stability and phase change characteristics of DI water-GnP-based NFPCM for cold thermal energy storage systems. Environ Sci Pollut Res 66935–66949. https://doi.org/10.1007/s11356-022-20419-3 Ponnusamy MGC (2023) Assessment of engine characteristics of compression ignition engine fuelled with Polanga oil and camphor oil blend. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-023-04949-y Premnath D, Chandrasekaran P, Ramachandran L, Subramanian G (2022) Experimental performance of a finned spherical container in cold thermal storage for tropical buildings. Environ Sci Pollut Res 76793–76804. https://doi.org/10.1007/s11356-022-21286-8 Sathishkumar A, Cheralathan M, Deionized DI (2022) Effect of active multi-walled carbon nanotubes (MWCNT) on the energy storage density of DI water for cool thermal storage system. Environ Sci Pollut Res 38493–38504. https://doi.org/10.1007/s11356-022-18779-x Sidney S, Prabakaran R, Kim SC, Dhasan ML (2022) A novel solar-powered milk cooling refrigeration unit with cold thermal energy storage for rural application. Environ Sci Pollut Res 29:16346–16370. https://doi.org/10.1007/s11356-021-16852-5 Silva R, Eggimann S, Fierz L et al (2022) Opportunities for passive cooling to mitigate the impact of climate change in Switzerland. Build Environ 208. https://doi.org/10.1016/j.buildenv.2021.108574 Sultan HS, Hasan M, Shafi J et al (2024) Design improvement of latent heat thermal energy storage in wavy channel enclosures using neural networks. J Energy Storage 79:110061. https://doi.org/10.1016/j.est.2023.110061 Sundaram P, Kalaisselvane A (2022a) Cold thermal energy storage performance of graphene nanoplatelets–DI water nanofluid PCM using gum acacia in a spherical encapsulation. J Therm Anal Calorim 147:14973–14985. https://doi.org/10.1007/s10973-022-11690-0 Sundaram P, Kalaisselvane A (2022b) Effect of different additives on freezing characteristics and stability of GnP-aqueous-based PCM for cold thermal storage. J Therm Anal Calorim 147:8033–8045. https://doi.org/10.1007/s10973-021-11056-y Tan FL, Leong KC (1999) An experimental investigation of solidification in a rectangular enclosure under constant heat rate condition. Int Commun Heat Mass Transf 26:925–934. https://doi.org/10.1016/S0735-1933(99)00082-2 Tan FL, Hosseinizadeh SF, Khodadadi JM, Fan L (2009) Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. Int J Heat Mass Transf 52:3464–3472. https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.043 Teja PNS, Gugulothu SK, Sastry GR et al (2022) Numerical analysis of nanomaterial-based sustainable latent heat thermal energy storage system by improving thermal characteristics of phase change material. Environ Sci Pollut Res 29:50937–50950. https://doi.org/10.1007/s11356-021-15485-y Tharayil T, Asirvatham LG, Manova S et al (2022) An experimental investigation on the heat transfer characteristics of closed-loop pulsating heat pipe with graphene–water nanofluid. J Therm Anal Calorim 147:12721–12737. https://doi.org/10.1007/s10973-022-11454-w Tullius JF, Bayazitoglu Y (2013) Effect of Al2O3/H2O nanofluid on MWNT circular fin structures in a minichannel. Int J Heat Mass Transf 60:523–530. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.035 Velraj R, Cheralathan M, Renganarayanan S (2006) Energy management through encapsulated PCM based storage system for large building air conditioning application (december 2006). Int Energy J 7:253–259 Wu J, Chen Q, Zhang Y, Sun K (2021) Phase change material heat transfer enhancement in latent heat thermal energy storage unit with single fin: comprehensive effect of position and length. J Energy Storage 42:103101. https://doi.org/10.1016/j.est.2021.103101 Zhang XJBJ, Wu P, Qiu LM et al (2010) Analysis of the nucleation of nanofluids in the ice formation process. Energy Convers Manag 51:130–134. https://doi.org/10.1016/j.enconman.2009.09.001 Zhao L, Zeng W, Yuan Z (2015) Reduction of potential greenhouse gas emissions of room air-conditioner refrigerants: a life cycle carbon footprint analysis. J Clean Prod 100:262–268. https://doi.org/10.1016/j.jclepro.2015.03.063