Effect of grain alignment and processing temperature on critical currents in YBa2Cu3O7-δ sintered compacts

Journal of Materials Research - Tập 5 - Trang 1368-1379 - 1990
J. E. Tkaczyk1, K. W. Lay1
1General Electric Corporate Research and Development, Schenectady, USA

Tóm tắt

Magnetically aligned YBa2Cu3O7-δ ceramics show resistivities approaching that of single crystals and improved transport critical currents in a magnetic field. Reduced microcracking and increased transport along the ab-plane are believed responsible for the improved performance over nonaligned ceramics. Aligned and nonaligned samples were prepared in parallel using a range of sintering and annealing temperatures. A rapid rise in density for samples sintered above 900°C in oxygen is accompanied by rapid grain growth, improved alignment, a drop in the room temperature resistivity, and an increase in the critical current. The presence of low melting point (i.e., Ba–Cu–O-rich) phases at grain boundaries is believed responsible for the rapid densification. However, the presence of this phase does not appear to be the most important factor limiting Jc. A high temperature oxygen anneal at 900°C improved performance as compared to anneals at 500°C, possibly due to the removal of carbon. For aligned samples sintered at 980°C, critical currents are over 200 A/cm2 at 77 K, ¼ tesla, and room temperature resistivities are below 350 μΩ-cm.

Tài liệu tham khảo

J. G. Bednorz and K. A. Müller, Ζ. Phys. Β 64, 189 (1986). J. W. Ekin, A. I. Braginski, A. J. Panson, M. A. Janocko, D. W. Capone, II, N. J. Zaluzec, B. Flandermeyer, O. F. de Lima, M. Hong, J. Kwo, and S. H. Liou, J. Appl. Phys. 62, 4821 (1987); D. P. Hampshire, X. Cai, J. Seuntjens, and D. C. Larbalestier, Supercond. Sci. Technol. 1, 12 (1988). P. Chaudhari, R. H. Koch, R. B. Laibowitz, T. R. McGuire, and R. J. Gambino, Phys. Rev. Lett. 58, 2684 (1987); B. Oh, M. Naito, S. Arnason, P. Rosenthal, R. Barton, M. R. Beasley, T. H. Geballe, R. H. Hammond, and A. Kapitulnik, Appl. Phys. Lett. 51, 852 (1987); Y. Enomoto, T. Murakami, M. Suzuki, and K. Moriwaki, Jpn. J. Appl. Phys. 26, L1248 (1987). K. Watanabe, H. Yamane, H. Kurosawa, T. Hirai, N. Kobayashi, H. Iwasaki, K. Noto, and Y. Muto, Appl. Phys. Lett. 54, 575 (1989); J. D. Hettinger, A. G. Swanson, W. J. Skocpol, J. S. Brooks, J. M. Graybeal, P. M. Mankiewich, R. E. Howard, B. L. Straughn, and E. G. Burkhardt, Phys. Rev. Lett. 62, 2044 (1989); J. S. Satchell, R. G. Humphreys, N. G. Chew, J. A. Edwards, and M. J. Kane, Nature 334, 331 (1988). N. McN. Alford, J. D. Birchall, W. J. Clegg, and K. Kendell, J. Appl. Phys. 65, 2856 (1989); M. Okada, A. Okayama, T. Morimoto, T. Matsumoto, K. Aihara, and S. Matsuda, Jpn. J. Appl. Phys. 27, L185 (1988); D. P. Hampshire, X. Cai, J. Seuntjens, and D. C. Larbalestier, Supercond. Sci. Technol. 1, 12 (1988). P. Chaudhari, J. Mannhart, D. Dimos, C. C. Tsuei, J. Chi, M. M. Oprysko, and M. Scheuermann, Phys. Rev. Lett. 60, 1653 (1988). J. Aponte, H. C. Abache, A. Sa-Neto, and M. Octavio, Phys. Rev. Β 39, 2233 (1989). R. L. Peterson and J. W. Ekin, Phys. Rev. Β 37, 9848 (1988). H. Küpfer, I. Apfelstedt, R. Flükiger, C. Keller, R. Meier-Hirmer, B. Runtsch, A. Turowski, U. Wiech, and T. Wolf, Cryogenics 28, 650 (1988). A. K. Ghosh, M. Suenaga, T. Asano, A. R. Moodenbaugh, and R. L. Sabatini, Adv. Cryogenic Mater. 34, 607 (1987); Gang Xiao, F. H. Streitz, A. Gavrin, M. Z. Cieplak, J. Childress, Ming Lu, Α. Zwicker, and C. L. Chien, Phys. Rev. Β 36, 2382 (1987). T. R. Dinger, Τ. Κ. Worthington, W. J. Gallagher, and R. L. Sandstrom, Phys. Rev. Lett. 58, 2687 (1987). D. Dimos, P. Chaudhari, J. Mannhart, and F. K. LeGoues, Phys. Rev. Lett. 61, 219 (1988). D. E. Farrell, B. S. Chandrasekhar, M. R. DeGuire, M. M. Fang, V. G. Kogan, J. R. Clem, and D. K. Finnemore, Phys. Rev. B 36, 4025 (1987). J. D. Livingston, H. R. Hart, Jr., and W. P. Wolf, J. Appl. Phys. 64, 5806 (1988). R. H. Arendt, A. R. Gaddipati, M. F. Garbauskas, E. L. Hall, H. R. Hart, Jr., K. W. Lay, J. D. Livingston, F. E. Luborsky, and L. L. Schilling (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1988), Vol. 99, p. 203. Y. Nakagawa, H. Yamasaki, H. Obara, and Y. Kimura, Jpn. J. Appl. Phys. 28, L547 (1989); D. P. Hampshire, J. Seuntjens, L. D. Cooley, and D. C. Larbalestier, Appl. Phys. Lett. 53, 814 (1988); K. Chen, B. Maheswaran, Y. P. Liu, B. C. Giessen, C. Chan, and R. S. Markiewicz, Appl. Phys. Lett. 55, 289 (1989). Y. Morii, S. Funahashi, K. Ozawa, M. Okada, Y. Matsumoto, K. Aihara, and S. Matsuda, Jpn. J. Appl. Phys. 28, L618 (1989). D. B. Knorr and J. D. Livingston, Supercond. Sci. Technol. 1, 302 (1989). M. Okada, A. Okayama, T. Morimoto, T. Matsumoto, K. Aihara, and S. Matsuda, Jpn. J. Appl. Phys. 27, L185 (1988). M. Okada, A. Okayama, T. Matsumoto, K. Aihara, S. Matsuda, K. Ozawa, Y. Morri, and S. Funahashi, Jpn. J. Appl. Phys. 27, L1715 (1988). Y Yamada, T. Morimoto, and M. Suzuki, Jpn. J. Appl. Phys. 28, L557 (1989); H. Dersch and G. Blatter, Phys. Rev. Β 38, 11391 (1988); Η. Dersch and G. Blatter, Phys. Rev. Β 38, 11391 (1988). L. F. Schneemeyer, Ε. Μ. Gyorgy, and J. V. Waszczak, Phys. Rev. Β 36, 8804 (1987); G. W. Crabtree, J. Ζ. Liu, A. Umezawa, W. K. Kwok, C. H. Sowers, S. K. Malik, B. W. Veal, D. J. Lam, M. B. Brodsky, and J. W. Downey, Phys. Rev. Β 36, 4021 (1987); D. E. Farrell, B. S. Chandrasekhar, M. R. DeGuire, M. M. Fang, V. G. Kogan, J. R. Clem, and D. K. Finnemore, Phys. Rev. Β 36, 4032 (1987). S. Jin, T. H. Tiefel, R. C. Sherwood, M. E. Davis, R. B. van Dover, G. W. Kammlott, R. A. Fastnocht, and H. D. Keith, Appl. Phys. Lett. 52, 2074 (1988). S. Nakahara, G. J. Fisanick, M. F. Yan, R. B. van Dover, and T. Boone, J. Cryst. Growth 85, 639 (1987). D. M. Kroeger, J. of Metals, 14 (Jan. 1989); S. E. Babcock, T. F. Kelley, P. J. Lee, J. M. Seuntjens, L. A. Lavanier, and D. C. Larbalestier, Physica C 152, 25 (1988); D. M. Kroeger, A. Choudhury, J. Brynestad, R. K. Williams, R. A. Padgett, and W. A. Coghlan, J. Appl. Phys. 64, 331 (1988); J. E. Blendell, C. A. Handwerker, M. D. Vaudin, and E. R. Fuller, Jr., J. Cryst. Growth 89, 93 (1988); J. D. Verhoeven, A. J. Bevolo, R. W. McCallum, E. D. Gibson, and M. A. Noack, Appl. Phys. Lett. 52, 745 (1988). A. Kikuchi, M. Maesuda, T. Maeda, M. Ishh, M. Takata, and T. Yamashita, Jpn. J. Appl. Phys. 27, 1231 (1988); D. Shi, D. W. Capone, II, G. T. Goudey, J. P. Singh, N. J. Zaluzec, and K. C. Goretta, Mater. Lett. 6, 217 (1988); K. Sawano, A. Hayashi, T. Ando, T. Inuzuka, and H. Kubo, preprint. J. E. Ullman, R. W. McCallum, and J. D. Verhoeven, J. Mater. Res. 4 (4), 752 (1989); K. W. Lay and G. M. Renlund, submitted to J. Am. Ceram. Soc. (1989). F. Stucki, P. Brüesch, and T. Baumann, Physica C 156, 461 (1988). J. van der Maas, V. A. Gasparov, and D. Pavuna, Nature 328, 603 (1987). M. Wakata, S. Miyashita, K. Egawa, H. Higuma, T. Ogama, K. Yoshizaki, S. Yokayama, K. Shimohata, M. Morita, and T. Yamada, presented at the ISTEC Workshop on Superconductivity, Oiso (February 1989). R. L. Fullman, Trans. AIME 197, 1267 (1953). B. A. Glowacki and J. E. Evetts (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1988), Vol. 99, p. 419. J. Halbritter, Inter. J. Modern Phys. Β 3, 719 (1989). M. Hikita and M. Suzuki, Phys. Rev. Β 39, 4756 (1989); T. A. Friedmann, J. P. Rice, J. Giapintzakis, and D. M. Ginsberg, preprint (1989). T. Penney, S. von Molnár, D. Kaiser, F. Holtzberg, and A. W. Kleinsasser, Phys. Rev. Β 38, 2918 (1988). D. S. Ginley, E. L. Venturini, J. F. Kwak, R. J. Baughman, and B. Morosin, J. Mater. Res. 4 (3), 496 (1989). R. W. McCallum, J. of Metals, 50 (January 1989). P. K. Gallagher, Thermochimica Acta 148, 299 (1989).