Effect of gas spacing and resonance frequency on theoretical performance of thermoacoustic refrigerators

B. G. Prashantha1, S. Seetharamu2, G. S. V. L. Narasimham3, K. Manjunatha4
1Department of Mechanical Engineering, JSS Academy of Technical Education, Bengaluru, India
2Formerly Central Power Research Institute, Bengaluru, India
3Department of Mechanical Engineering, Indian Institute of Science, Bengaluru, India
4Department of Mechanical Engineering, Rao Bahadur Y Mahabaleshwarappa Engineering College, Ballari, India

Tóm tắt

In this paper, the design and analysis of 500 W thermoacoustic refrigerators for the temperature difference of 28 K using helium and air are discussed. Helium is the best working gas, but air is chosen to study the possibility of replacing helium for the future cost-effective refrigerator since it is much cheaper than helium. Heat and work flow equations of thermoacoustic refrigerators are discussed. The refrigerator models are optimized by normalizing the design parameters using Rott’s linear thermoacoustic theory. The effect of gas spacing expressed in terms of the thermal penetration depth in stack-heat exchanger unit at 85% porosity is discussed. The effect of the resonance frequency of air on the stack-heat exchanger sheets spacing and thickness and on the theoretical performance is discussed. The effect of the resonance frequency of air on the theoretical performance at 200 Hz, 300 Hz, and 400 Hz is discussed. The cooler shows better COP of 1.72 at 300 Hz for air and 1.53 at 400 Hz for helium. The theoretical results are compared with the DeltaEC software results. The DeltaEC predicts cooling power and COP of 347 W at 1.02 for helium and 224 W at 0.79 for air, respectively.

Tài liệu tham khảo

Wetzel, M., & Herman, C. (1997). Design optimization of thermoacoustic refrigerator. International Journal of Refrigeration, 20(1), 3–21. Prashantha, B. G., Seetharamu, S., Govinde Gowda, M. S., & Narasimham, G. S. V. L. (2013). Theoretical evaluation of loudspeaker for a 10-W cooling power thermoacoustic refrigerator. International Journal of Air-Conditioning and Refrigeration, 21(4), 1350027. https://doi.org/10.1142/S2010132513500272 Prashantha, B. G., Narasimham, G. S. V. L., Seetharamu, S., & Manjunatha, K. (2021). Effect of gas blockage on the theoretical performance of thermoacoustic refrigerators. International Journal of Air-Conditioning and Refrigeration, 29(3), 2150026. https://doi.org/10.1142/S2010132521500267 Hofler, T. J. (1986). Thermoacoustic refrigerator design and performance, Ph.D. dissertation. University of California. Tijani, M. E. H. (2001). Loudspeaker-driven thermo-acoustic refrigeration. Ph.D. Thesis. Eindhoven University of Technology. Prashantha, B. G., Govinde Gowda, M. S., Seetharamu, S., & Narasimham, G. S. V. L. (2017). Design construction and performance of 10 W thermoacoustic refrigerators. International Journal of Air-Conditioning and Refrigeration, 25(3), 1750023. https://doi.org/10.1142/S2010132517500237 Narasimham, G. S. V. L., & Krishna Murthy, M. V. (1997). Thermoacoustic refrigeration: An overview. Workshop on Cryocooler Technology-Emerging Trends, Applications and Curriculum Development, Lecture Materials; Central Cryogenic Facility, IISc Bengaluru. Swift, G. W. (1997). Thermoacoustic engines and refrigerators. Encyclopedia Appl Physical, 21, 245–264. Pat Arnot, W., Bass, H. E., & Raspect, R. (1991). General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections. The Journal of the Acoustical Society of America, 90, 3228–37. Prashantha, B. G., Swamy, D. R., Soargaon, B., & Nanjundeswaraswamy, T. S. (2020). Design optimization and analysis of thermoacoustic refrigerators. International Journal of Air-Conditioning and Refrigeration, 28(3), 2050020. https://doi.org/10.1142/S2010132520500200 Prashantha, B. G., Seetharamu, S., Narasimham, G. S. V. L., & Praveen Kumar, M. R. (2019). Design and analysis of thermoacoustic refrigerators using air as working substance. International Journal of Air-Conditioning and Refrigeration, 27(1), 1950008. https://doi.org/10.1142/S2010132519500081 Tijani, M. E. H., Zeegers, J. C. H., & de Waele, A. T. A. M. (2002). The optimal stack spacing for thermoacoustic refrigeration. Journal of the Acoustical Society of America, 112(1), 128–133. Akhavanbazaz, M., Kamran Siddiqui, M. H., & Bhat, R. B. (2007). The impact of gas blockage on the performance of a thermoacoustic refrigerator. Thermal and Fluid Science, 32, 231–239. Rott, N. (1980). Thermoacoustics. Advances in Applied Mechanics, 20, 135–175. Swift, G. W. (1988). Thermoacoustic engines. Journal of the Acoustical Society of America, 84(4), 1145–1180. Prashantha, B. G., Seetharamu, S., Narasimham, G. S. V. L., & Praveen Kumar, M. R. (2019). Effect of stack spacing on the performance of thermoacoustic refrigerators using helium and air as working substances. International Journal of Air-Conditioning and Refrigeration, 27(2), 1950016. https://doi.org/10.1142/S2010132519500160 Prashantha, B. G., Govinde Gowda, M. S., Seetharamu, S., & Narasimham, G. S. V. L. (2016). Design analysis of thermoacoustic refrigerator using air and helium as working substances. International Journal Thermal and Environmental Engineering, 13(2), 113–120. https://doi.org/10.5383/ijtee.13.02.006 Swift, G. W. (2002). Thermoacoustics: A unifying perspective of some engines and refrigerators. Acoust. Soc. Am., 113, 214–218. Prashantha, B. G. , Govinde Gowda M. S. , Seetharamu S., & Narasimham G. S. V. L. (2018). Design and analysis of acoustically-driven 50 W thermoacoustic refrigerators. Sādhanā, 43(82). https://doi.org/10.1007/s12046-018-0860-8 Prashantha, B. G., Govinde Gowda, M. S., Seetharamu, S., & Narasimham, G. S. V. L. (2013). Design and analysis of thermoacoustic refrigerator. International Journal Air-Conditioning and Refrigeration, 21(1), 1350001. https://doi.org/10.1142/S2010132513500016 Garrett, S. L., Adeff, J. A., & Hofler, T. J. (1993). Thermoacoustic refrigerator for space applications. Journal of thermophysics and Heat Transfer, 7, 595–599. Zolpakar, N. A., Mohd-Ghazali, N., & EI-Fawal, M. H. (2016). Performance analysis of the standing wave thermoacoustic refrigerator: a review. Renewable and sustainable energy reviews, 54, 626–634. Prashantha, B. G., Govinde Gowda, M. S., Seetharamu, S., & Narasimham, G. S. V. L. (2015). Resonator optimization and studying the effect of drive ratio on the theoretical performance of a 10-W cooling power thermoacoustic refrigerator. International Journal Air-Conditioning and Refrigeration, 23(3), 1550020. https://doi.org/10.1142/S201013251 Prashantha, B. G., Govinde Gowda, M. S., Seetharamu, S., & Narasimham, G. S. V. L. (2017). Design and comparative analysis of thermoacoustic refrigerators. International Journal Air-Conditioning and Refrigeration, 25(1), 1750002. https://doi.org/10.1142/S201013251750002X Poese, M. E., & Garrett, S. L. (2000). Performance measurements on a thermoacoustic refrigerator driven at high amplitudes. Journal of the Acoustical Society of America, 107(5), 2480–2486. Prashantha, B. G., Govinde Gowda, M. S., Seetharamu, S., & Narasimham, G. S. V. L. (2014). Design and optimization of a loudspeaker-driven 10 W cooling power thermoacoustic refrigerator. Int J Air-Conditioning and Refrigeration, 22(3), 1450015. https://doi.org/10.1142/S2010132514500151 Prashantha, B. G., GovindeGowda, M. S., Seetharamu, S., & Narasimham, G. S. V. L. (2013). Theoretical evaluation of 10-W cooling power thermoacoustic refrigerator. Heat Transfer-Asian Research Journal, 43(7), 557–591. https://doi.org/10.1002/htj.21094 Ward, B., Clark, J., & Swift, G. W. (2008). Design environment for low-amplitude thermoacoustic energy conversion (DeltaEC software). Version 6.2, Los Alamos National Laboratory. Available at http://www.lanl.gov/thermoacoustics. Wakeland, R. S. (2000). Use of electrodynamic drivers in thermoacoustic refrigerators. Journal of the Acoustical Society of America, 107, 827–832. Tijani, M. E. H., Zeegers, J. C. H., & de Waele, A. T. A. M. (2002). A gas-spring system for optimizing loudspeakers in thermoacoustic refrigerators. Journal of Applied Physics, 92(4), 2159–2165. Babaei, H., & Siddiqui, K. (2008). Design and optimization of thermoacoustic devices. Energy Conversion and Management, 49, 3585–3598. Prashantha, B. G., Govinde Gowda, M. S., & Seetharamu, S. (2013). Effect of mean operating pressure on the performance of stack-based thermoacoustic refrigerator Int. Journal Thermal and Environmental Engineering, 5(1), 83–89. https://doi.org/10.5383/ijtee.05.01.009 Prashantha, B. G., Narasimham G. S. V. L., Seetharamu S., & Hemadri, VB. (2022). Theoretical evaluation of stack based thermoacoustic refrigerators. International Journal of Air-Conditioning and Refrigeration 30 (8), https://doi.org/10.1007/s44189-022-00008-2