Effect of friction stir processing on microstructure and tensile behavior of AA6061/Al3Fe cast aluminum matrix composites

Journal of Alloys and Compounds - Tập 785 - Trang 531-541 - 2019
M. Balakrishnan1,2, I. Dinaharan3, R. Palanivel3, R. Sathiskumar4
1Department of Mechanical Engineering, Anna University, Chennai, 600025, Tamil Nadu, India
2Department of Mechanical Engineering, Nehru Institute of Engineering and Technology, Coimbatore 641105, Tamil Nadu, India
3Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, 2006, South Africa
4Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore 641014, Tamil Nadu, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kai, 2016, Effects of ultrasonic vibration on the microstructure and tensile properties of the nano ZrB2/2024Al composites synthesized by direct melt reaction, J. Alloys Compd., 668, 121, 10.1016/j.jallcom.2016.01.152

Tang, 2015, Quantitative study of particle size distribution in an in-situ grown Al–TiB2 composite by synchrotron X-ray diffraction and electron microscopy, Mater. Char., 102, 131, 10.1016/j.matchar.2015.03.003

Sannino, 1995, Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion, Wear, 189, 1, 10.1016/0043-1648(95)06657-8

Bodunrin, 2015, Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics, J. Mater. Res. Technol., 4, 434, 10.1016/j.jmrt.2015.05.003

Davidson, 2000, A comparison of aluminium-based metal-matrix composites reinforced with coated and uncoated particulate silicon carbide, Compos. Sci. Technol., 60, 865, 10.1016/S0266-3538(99)00151-7

Ghandvar, 2015, Wettability enhancement of SiCp in cast A356/SiCp composite using semisolid process, Mater. Manuf. Process., 30, 1442, 10.1080/10426914.2015.1004687

Sajjadi, 2011, Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting, Mater. Sci. Eng. A, 528, 8765, 10.1016/j.msea.2011.08.052

Ezatpour, 2014, Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting, Mater. Des., 55, 921, 10.1016/j.matdes.2013.10.060

Muralidharan, 2018, Microstructure and mechanical behavior of AA2024 aluminum matrix composites reinforced with in situ synthesized ZrB2 particles, J. Alloys Compd., 735, 2167, 10.1016/j.jallcom.2017.11.371

Singh, 2016, Characterization of hybrid aluminum matrix composites for advanced applications – a review, J. Mater. Res. Technol., 5, 159, 10.1016/j.jmrt.2015.05.004

Varin, 2002, Intermetallic reinforced light metal matrix in situ composites, Metall. Mater. Trans. A, 33, 193, 10.1007/s11661-002-0018-4

Gangil, 2017, Aluminium based in-situ composite fabrication through friction stir processing: a review, J. Alloys Compd., 715, 91, 10.1016/j.jallcom.2017.04.309

Raviathul Basariya, 2015, Structural transition and softening in Al–Fe intermetallic compounds induced by high energy ball milling, Mater. Sci. Eng. A, 638, 282, 10.1016/j.msea.2015.04.076

Lee, 2003, Fabrication of Al/Al3Fe composites by plasma synthesis method, Mater. Sci. Eng. A, 343, 199, 10.1016/S0921-5093(02)00380-5

Yamagiwa, 2006, Characteristics of a near-net-shape formed Al–Al3Fe eco-functionally graded material produced over its eutectic melting temperature, Mater. Sci. Eng. A, 416, 80, 10.1016/j.msea.2005.10.031

Mohan, 2006, Surface behaviour of as-Cast Al–Fe intermetallic composites, Tribol. Lett., 22, 45, 10.1007/s11249-006-9047-2

Myalska, 2006, Characterization of iron aluminides formed in situ in an aluminium matrix composite, Mater. Char., 56, 379, 10.1016/j.matchar.2005.12.014

Chatterjee, 2013, Microstructure and mechanical properties of Al/Fe-aluminide in-situ composite prepared by reactive stir casting route, Mater. Sci. Eng. A, 578, 6, 10.1016/j.msea.2013.04.008

Agarwal, 2014, Synthesis and characterization of Al/Al3Fe nanocomposite for tribological applications, J. Tribol., 136

Xue, 2015, Fabrication, microstructure and mechanical properties of Al–Fe intermetallic particle reinforced Al-based composites, J. Alloys Compd., 618, 537, 10.1016/j.jallcom.2014.09.009

Ahmed, 2007, Study of the wear behaviour of Al–4.5% Cu–3.4% Fe in situ composite: effect of thermal and mechanical processing, J. Mater. Process. Technol., 182, 327, 10.1016/j.jmatprotec.2006.08.009

Zamani, 2018, Mechanical properties of a hot deformed Al-Mg2Si in-situ composite, Mater. Sci. Eng. A, 726, 10, 10.1016/j.msea.2018.04.064

Sato, 2018, Effects of forging temperature on Al3Ti particle distribution in Al–Al3Ti multi-phase materials deformed by multi-directional forging, J. Jpn. Inst. Light Met., 68, 2, 10.2464/jilm.68.2

Zhang, 2007, Effect of α-Al/Al3Ni microstructure on the corrosion behaviour of Al–5.4wt% Ni alloy fabricated by equal-channel angular pressing, Corros. Sci., 49, 2962, 10.1016/j.corsci.2007.02.007

Ma, 2008, Friction stir processing Technology: a review, Metall. Mater. Trans. A, 39, 642, 10.1007/s11661-007-9459-0

Sharma, 2015, Surface composites by friction stir processing: a review, J. Mater. Process. Technol., 224, 117, 10.1016/j.jmatprotec.2015.04.019

Kumar, 2017, Simultaneous improvement of mechanical strength, ductility and corrosion resistance of stir cast Al7075-2% SiC micro– and nanocomposites by friction stir processing, J. Manuf. Process., 30, 1, 10.1016/j.jmapro.2017.09.005

Moustafa, 2017, Effect of multi-pass friction stir processing on mechanical properties for AA2024/Al2O3 nanocomposites, Materials, 10, 1053, 10.3390/ma10091053

Bauri, 2014, Optimization of process parameters for friction stir processing (FSP) of Al–TiC in situ composite, Bull. Mater. Sci., 37, 571, 10.1007/s12034-014-0692-z

Ju, 2017, Microstructure of multi-pass friction-stir-processed Al-Zn-Mg-Cu alloys reinforced by nano-sized TiB2 particles and the effect of T6 heat treatment, Metals, 7, 530, 10.3390/met7120530

Zhao, 2016, Effects of friction stir processing on the microstructure and superplasticity of in situ nano-ZrB2/2024Al composite, Prog. Nat. Sci. Mater. Int., 26, 69, 10.1016/j.pnsc.2016.01.009

Yang, 2015, Effect of multi-pass friction stir processing on microstructure and mechanical properties of Al3Ti/A356 composites, Mater. Char., 106, 62, 10.1016/j.matchar.2015.05.019

Dinaharan, 2014, Development of Al3Ti and Al3Zr intermetallic particulate reinforced aluminum alloy AA6061 in situ composites using friction stir processing, Mater. Des., 63, 213, 10.1016/j.matdes.2014.06.008

Michael Rajan, 2016, Influence of friction stir processing on microstructure and properties of AA7075/TiB2 in situ composite, J. Alloys Compd., 657, 250, 10.1016/j.jallcom.2015.10.108

Zhao, 2007, Effects of molten temperature on the morphologies of in situ Al3Zr and ZrB2 particles and wear properties of (Al3Zr + ZrB2)/Al composites, Mater. Sci. Eng. A, 457, 156, 10.1016/j.msea.2006.12.007

Sasikumar, 1991, Redistribution of particles during casting of composite melts: effects of buoyancy and particle pushing, Acta Metall. Mater., 39, 2503, 10.1016/0956-7151(91)90065-9

Kumar, 2008, The role of friction stir welding tool on material flow and weld formation, Mater. Sci. Eng. A, 485, 367, 10.1016/j.msea.2007.08.013

Fènoël, 2016, A review about friction stir welding of metal matrix composites, Mater. Char., 120, 1, 10.1016/j.matchar.2016.07.010

Lia, 2018, Effect of welding parameters and B4C contents on the microstructure and mechanical properties of friction stir welded B4C/6061Al joints, J. Mater. Process. Technol., 251, 305, 10.1016/j.jmatprotec.2017.08.028

Lu, 1997, Al-4 wt% Cu Composite reinforced with in-situ TiB2 particles, Acta Mater., 45, 4297, 10.1016/S1359-6454(97)00075-X

Arora, 2012, Composite fabrication using friction stir processing—a review, Int. J. Adv. Manuf. Technol., 61, 1043, 10.1007/s00170-011-3758-8

Emami, 2015, Effects of welding and rotational speeds on the microstructure and hardness of friction stir welded single-phase brass, Acta Metall. Sin., 28, 766, 10.1007/s40195-015-0259-z

Bauri, 2015, Tungsten particle reinforced Al5083 composite with high strength and ductility, Mater. Sci. Eng. A, 620, 67, 10.1016/j.msea.2014.09.108

Ma, 2014, Microstructure and mechanical properties of friction stir processed Al–Mg–Si alloys dispersion-strengthened by nanosized TiB2 particles, J. Alloys Compd., 616, 128, 10.1016/j.jallcom.2014.07.092