Effect of friction stir processing on microstructure and tensile behavior of AA6061/Al3Fe cast aluminum matrix composites
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kai, 2016, Effects of ultrasonic vibration on the microstructure and tensile properties of the nano ZrB2/2024Al composites synthesized by direct melt reaction, J. Alloys Compd., 668, 121, 10.1016/j.jallcom.2016.01.152
Tang, 2015, Quantitative study of particle size distribution in an in-situ grown Al–TiB2 composite by synchrotron X-ray diffraction and electron microscopy, Mater. Char., 102, 131, 10.1016/j.matchar.2015.03.003
Sannino, 1995, Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion, Wear, 189, 1, 10.1016/0043-1648(95)06657-8
Bodunrin, 2015, Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics, J. Mater. Res. Technol., 4, 434, 10.1016/j.jmrt.2015.05.003
Davidson, 2000, A comparison of aluminium-based metal-matrix composites reinforced with coated and uncoated particulate silicon carbide, Compos. Sci. Technol., 60, 865, 10.1016/S0266-3538(99)00151-7
Ghandvar, 2015, Wettability enhancement of SiCp in cast A356/SiCp composite using semisolid process, Mater. Manuf. Process., 30, 1442, 10.1080/10426914.2015.1004687
Sajjadi, 2011, Microstructure and mechanical properties of Al–Al2O3 micro and nano composites fabricated by stir casting, Mater. Sci. Eng. A, 528, 8765, 10.1016/j.msea.2011.08.052
Ezatpour, 2014, Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting, Mater. Des., 55, 921, 10.1016/j.matdes.2013.10.060
Muralidharan, 2018, Microstructure and mechanical behavior of AA2024 aluminum matrix composites reinforced with in situ synthesized ZrB2 particles, J. Alloys Compd., 735, 2167, 10.1016/j.jallcom.2017.11.371
Singh, 2016, Characterization of hybrid aluminum matrix composites for advanced applications – a review, J. Mater. Res. Technol., 5, 159, 10.1016/j.jmrt.2015.05.004
Varin, 2002, Intermetallic reinforced light metal matrix in situ composites, Metall. Mater. Trans. A, 33, 193, 10.1007/s11661-002-0018-4
Gangil, 2017, Aluminium based in-situ composite fabrication through friction stir processing: a review, J. Alloys Compd., 715, 91, 10.1016/j.jallcom.2017.04.309
Raviathul Basariya, 2015, Structural transition and softening in Al–Fe intermetallic compounds induced by high energy ball milling, Mater. Sci. Eng. A, 638, 282, 10.1016/j.msea.2015.04.076
Lee, 2003, Fabrication of Al/Al3Fe composites by plasma synthesis method, Mater. Sci. Eng. A, 343, 199, 10.1016/S0921-5093(02)00380-5
Yamagiwa, 2006, Characteristics of a near-net-shape formed Al–Al3Fe eco-functionally graded material produced over its eutectic melting temperature, Mater. Sci. Eng. A, 416, 80, 10.1016/j.msea.2005.10.031
Mohan, 2006, Surface behaviour of as-Cast Al–Fe intermetallic composites, Tribol. Lett., 22, 45, 10.1007/s11249-006-9047-2
Myalska, 2006, Characterization of iron aluminides formed in situ in an aluminium matrix composite, Mater. Char., 56, 379, 10.1016/j.matchar.2005.12.014
Chatterjee, 2013, Microstructure and mechanical properties of Al/Fe-aluminide in-situ composite prepared by reactive stir casting route, Mater. Sci. Eng. A, 578, 6, 10.1016/j.msea.2013.04.008
Agarwal, 2014, Synthesis and characterization of Al/Al3Fe nanocomposite for tribological applications, J. Tribol., 136
Xue, 2015, Fabrication, microstructure and mechanical properties of Al–Fe intermetallic particle reinforced Al-based composites, J. Alloys Compd., 618, 537, 10.1016/j.jallcom.2014.09.009
Ahmed, 2007, Study of the wear behaviour of Al–4.5% Cu–3.4% Fe in situ composite: effect of thermal and mechanical processing, J. Mater. Process. Technol., 182, 327, 10.1016/j.jmatprotec.2006.08.009
Zamani, 2018, Mechanical properties of a hot deformed Al-Mg2Si in-situ composite, Mater. Sci. Eng. A, 726, 10, 10.1016/j.msea.2018.04.064
Sato, 2018, Effects of forging temperature on Al3Ti particle distribution in Al–Al3Ti multi-phase materials deformed by multi-directional forging, J. Jpn. Inst. Light Met., 68, 2, 10.2464/jilm.68.2
Zhang, 2007, Effect of α-Al/Al3Ni microstructure on the corrosion behaviour of Al–5.4wt% Ni alloy fabricated by equal-channel angular pressing, Corros. Sci., 49, 2962, 10.1016/j.corsci.2007.02.007
Ma, 2008, Friction stir processing Technology: a review, Metall. Mater. Trans. A, 39, 642, 10.1007/s11661-007-9459-0
Sharma, 2015, Surface composites by friction stir processing: a review, J. Mater. Process. Technol., 224, 117, 10.1016/j.jmatprotec.2015.04.019
Kumar, 2017, Simultaneous improvement of mechanical strength, ductility and corrosion resistance of stir cast Al7075-2% SiC micro– and nanocomposites by friction stir processing, J. Manuf. Process., 30, 1, 10.1016/j.jmapro.2017.09.005
Moustafa, 2017, Effect of multi-pass friction stir processing on mechanical properties for AA2024/Al2O3 nanocomposites, Materials, 10, 1053, 10.3390/ma10091053
Bauri, 2014, Optimization of process parameters for friction stir processing (FSP) of Al–TiC in situ composite, Bull. Mater. Sci., 37, 571, 10.1007/s12034-014-0692-z
Ju, 2017, Microstructure of multi-pass friction-stir-processed Al-Zn-Mg-Cu alloys reinforced by nano-sized TiB2 particles and the effect of T6 heat treatment, Metals, 7, 530, 10.3390/met7120530
Zhao, 2016, Effects of friction stir processing on the microstructure and superplasticity of in situ nano-ZrB2/2024Al composite, Prog. Nat. Sci. Mater. Int., 26, 69, 10.1016/j.pnsc.2016.01.009
Yang, 2015, Effect of multi-pass friction stir processing on microstructure and mechanical properties of Al3Ti/A356 composites, Mater. Char., 106, 62, 10.1016/j.matchar.2015.05.019
Dinaharan, 2014, Development of Al3Ti and Al3Zr intermetallic particulate reinforced aluminum alloy AA6061 in situ composites using friction stir processing, Mater. Des., 63, 213, 10.1016/j.matdes.2014.06.008
Michael Rajan, 2016, Influence of friction stir processing on microstructure and properties of AA7075/TiB2 in situ composite, J. Alloys Compd., 657, 250, 10.1016/j.jallcom.2015.10.108
Zhao, 2007, Effects of molten temperature on the morphologies of in situ Al3Zr and ZrB2 particles and wear properties of (Al3Zr + ZrB2)/Al composites, Mater. Sci. Eng. A, 457, 156, 10.1016/j.msea.2006.12.007
Sasikumar, 1991, Redistribution of particles during casting of composite melts: effects of buoyancy and particle pushing, Acta Metall. Mater., 39, 2503, 10.1016/0956-7151(91)90065-9
Kumar, 2008, The role of friction stir welding tool on material flow and weld formation, Mater. Sci. Eng. A, 485, 367, 10.1016/j.msea.2007.08.013
Fènoël, 2016, A review about friction stir welding of metal matrix composites, Mater. Char., 120, 1, 10.1016/j.matchar.2016.07.010
Lia, 2018, Effect of welding parameters and B4C contents on the microstructure and mechanical properties of friction stir welded B4C/6061Al joints, J. Mater. Process. Technol., 251, 305, 10.1016/j.jmatprotec.2017.08.028
Lu, 1997, Al-4 wt% Cu Composite reinforced with in-situ TiB2 particles, Acta Mater., 45, 4297, 10.1016/S1359-6454(97)00075-X
Arora, 2012, Composite fabrication using friction stir processing—a review, Int. J. Adv. Manuf. Technol., 61, 1043, 10.1007/s00170-011-3758-8
Emami, 2015, Effects of welding and rotational speeds on the microstructure and hardness of friction stir welded single-phase brass, Acta Metall. Sin., 28, 766, 10.1007/s40195-015-0259-z
Bauri, 2015, Tungsten particle reinforced Al5083 composite with high strength and ductility, Mater. Sci. Eng. A, 620, 67, 10.1016/j.msea.2014.09.108